Features of the Microstructure of Welded Joints of Single Crystals of Heat-Resistant Nickel Alloys

K. A. Yushchenko$^{1}$, B. A. Zadery$^{1}$, I. S. Gakh$^{1}$, A. V. Zviagintseva$^{1}$, L. M. Kapitanchuk$^{1}$, І. V. Nesina$^{1}$, O. P. Karasevska$^{2}$

$^{1}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 01.06.2021. Download: PDF

The peculiarities of the microstructure of welded joints of single crystals of heat-resistant nickel alloys made by electron beam welding are considered. The main structural areas of the welded joint are identified: the base metal, the heat effect zone (HAZ), the fusion area, the epitaxial growth zone, the weld sections corresponding to different deviations of the maximum heat dissipation from the orientation of the predominant crystal growth. The dependences of the structure of separate areas, their sizes from the initial crystallographic orientation of the single crystal, the brand of the studied alloy, temperature-temporal and temperature-spatial parameters of the process, determined mainly by welding modes, are established. HAZ is dominated by changes ($\gamma$ + $\gamma^{'}$)-structures consisting in complete or partial dissolution of the primary $\gamma^{'}$-phase, large globular eutectic formations with subsequent (upon cooling) separation of the dispersed nanosized secondary $\gamma^{'}$-phase. The weld metal is characterized by more noticeable changes in the dendritic structure—variables in the cross section of the weld, its parameters and morphology, a decrease in chemical inhomogeneity compared to the original metal. Changes in the characteristics of the $\gamma^{'}$-phase in the cross section of the weld in comparison with HAZ are less noticeable. It is pointed out despite the positive changes in the welding of the single-crystal structure, the need in each case for a comprehensive approach aimed at refining the welding technology and heat treatment from the standpoint of homogeneity and optimization of the weld structure as a whole.

Key words: single crystals of heat-resistant nickel alloys, particle size and morphology of dendrites and $\gamma^{'}$-phase, crystallographic orientation, structural zones of welded joints.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i09/1175.html

DOI: https://doi.org/10.15407/mfint.43.09.1175

PACS: 61.05.cp, 61.72.Dd, 64.70.D-, 68.37.Hk, 68.70.+w, 81.20.Vj

Citation: K. A. Yushchenko, B. A. Zadery, I. S. Gakh, A. V. Zviagintseva, L. M. Kapitanchuk, І. V. Nesina, and O. P. Karasevska, Features of the Microstructure of Welded Joints of Single Crystals of Heat-Resistant Nickel Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1175—1193 (2021)


REFERENCES
  1. R. E. Shalin, I. I. Svetlov, E. B. Kachanov, V. N. Tolorayya, and O. S. Gavrilov, Monokristally Nikelevykh Zharoprochnykh Splavov [Single Crystals of Nickel Heat-Resistant Alloys] (Moscow: Mashinostroenie: 1997) (in Russian).
  2. H. Hurada, Proc. of 'International Gas Turbine Congress-2003' (November 2-7, 2003) (Tokyo: 2003), p. 1.
  3. E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, Vestnik MGTU im. N. E. Baumana. Ser. 'Mashinostroenie', SP2: 38 (2011) (in Russian).
  4. G. B. Stroganov and V. M. Chepkin, Liteynye Zharoprochnye Splavy dlya Gazovykh Turbin [The Casting Superalloys for Gas Turbine] (Moscow: ONTI MATI: 2000) (in Russian).
  5. E. N. Kablov, N. V. Petrushin, I. L. Svetlov, and I. M. Demonis, Aviatsionnye Materialy i Tekhnologii, No. 5: 36 (2012) (in Russian).
  6. Chester T. Sims, Norman S. Stoloff, and William C. Hagel, Superalloys II: High-Temperature Materials for Aerospace and Industrial Power (New York: John Wiley Sons Inc.: 1987).
  7. Litye Lopatki Gazoturbinnykh Dvigateley (Supersplavy, Tekhnologii, Pokrytiya) [Cast Blades of Gas Turbine Engines (Superalloys, Technologies, Coatings] (Ed. E. N. Kablov) (Moscow: Nauka: 2006) (in Russian).
  8. E. N. Kablov, Yu. A. Bondarenko, A. B. Echin, V. A. Surova, and D. E. Kablov, Vestnik MGTU im. N. E. Baumana. Ser. 'Mashinostroenie', SP2: 20 (2011) (in Russian).
  9. A. B. Echin and Yu. A. Bondarenko, Aviatsionnye Materialy i Tekhnologii, No. 4: 14 (2014) (in Russian). Crossref
  10. T. M. Pollock and W. H. Murphy, Metall. Mater. Trans. A, 27A: 1081 (1996).
  11. J.-W. Park, S. S. Baby, J. M. Vitek, E. A. Keni, and S. A. David, J. Appl. Phys., 94, No. 6: 4203 (2003). Crossref
  12. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, A. V. Zvyagintseva, and O. P. Karasevskaya, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1347 (2013) (in Russian).
  13. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, A. V. Zvyagintseva, and O. P. Karasevskaya, Metallofiz. Noveishie Tekhnol., 31, No. 4: 473 (2009) (in Russian).
  14. K. A. Yushchenko, B. A. Zaderiy, A. V. Zvyagintseva, S. S. Kotenko, E. P. Polishchuk, V. S. Savchenko, I. S. Gakh, and O. P. Karasevskaya, Paton Welding J., No. 2: 6 (2008).
  15. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, A. V. Zvyagintseva, and O. P. Karasevskaya, Fizicheskie i Tekhnicheskie Problemy Sovremennogo Materialovedeniya [Physical and Technical Problems of Modern Materials Science] (Kyiv: Akademkniga: 2013), vol. 1, p. 148 (in Russian).
  16. K. A. Yushchenko, I. S. Gakh, B. A. Zaderiy, A. V. Zvyagintseva, and O. P. Karasevskaya, Paton Welding J., No. 5: 45 (2013).
  17. M. A. Krivoglaz, Difraktsiya Rentgenovskikh Luchey i Neytronov v Neideal'nykh Kristallakh [X-Ray and Neutron Diffraction in Nonideal Crystals] (Kyiv: Naukova Dumka: 1983) (in Russian).
  18. O. P. Karasevskaya, Metallofiz. Noveishie Tekhnol., 21, No. 8: 34 (1999) (in Russian).
  19. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, and O. P. Karasevskaya, Paton Welding J., No. 8: 15 (2016). Crossref
  20. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, and A. V. Zvyagintseva, Paton Welding J., Nos. 11-12: 83 (2018). Crossref