Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures

Ol. D. Zolotarenko$^{1}$, E. P. Rudakova$^{2}$, N. Y. Akhanova$^{3,4}$, An. D. Zolotarenko$^{2}$, D. V. Shchur$^{2}$, M. T. Gabdullin$^{3}$, M. Ualkhanova$^{4}$, N. A. Gavrylyuk$^{1}$, M. V. Chymbai$^{2}$, Yu. O. Tarasenko$^{1}$, I. V. Zagorulko$^{5}$, A. D. Zolotarenko$^{2}$

$^{1}$O. O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^{2}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{3}$Kazakh-British Technical University, 59 Tole bi, 050000 Almaty, Republic of Kazakhstan
$^{4}$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Republic of Kazakhstan
$^{5}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 20.07.2021. Download: PDF

Electrically conductive carbon-oxide composites based on Al$_2$O$_3$ and TiO$_2$, intended for 3D printing (CJP), are obtained, and the dependences of the obtained composites conductivity on the preparation conditions and types of used carbon nanostructures (CNS) are investigated. The structure and phase composition of the samples are studied by transmission electron microscopy, and their surface is studied using a field emission scanning electron microscope. The electrical conductivity of the materials is determined with a potentiostat using. The optimal conditions for the formation of composites based on Al$_2$O$_3$ or TiO$_2$ oxides with CNSs and nanofibers by processing mixtures in a planetary ball mixer, which would be ideal for preparing materials for 3D printing (CJP), have been determined. The dependence of the electrical conductivity of composites on the content of carbon nanomaterials (1–5% wt.) has been established. It is shown that the addition of 3 wt.% CNTs to oxides leads to a sharp increase in electrical conductivity from 5.0⋅10$^{−8}$ to 2.8⋅10$^{−4}$ S/cm for Al$_2$O$_3$ and from 5.0⋅10$^{−6}$ to 2.2⋅10$^{−2}$ S/cm for TiO$_2$. It has been proved that composites based on carbon monoxide are promising carriers for catalysts for electrode processes in electrochemical devices. It is revealed that the Pt/TiO$_2$–CNT catalyst with a CNT content of 5% wt. has the best catalytic activity in the reduction of oxygen in the fuel cell cathode simulating the electrode. 3D printing technology (CJP) of an electrically conductive composite (ceramics-CNT) can be used to modify of ceramic fuel cells. In addition, the use of CJP technology will allow to reduce the production cost of electrodes for fuel cells. A composite with 5% wt. CNTs is the most effective. A composite with a CNT content of 3% wt. has a smaller number of extended carbon structures, which ensures the transfer of electrons, and in samples with 15% wt. and 50% wt. CNTs, the low efficiency of the Pt catalyst may be associated with difficulties in contacting the reaction environment due to large amount of carbon material.

Key words: carbon nanostructures, carbon-ceramic nanocomposites (Al$_2$O$_3$ and TiO$_2$), electrical conductivity, catalytic activity, Pt/TiO$_2$–СNT, CJP 3D printing.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i10/1417.html

DOI: https://doi.org/10.15407/mfint.43.10.1417

PACS: 61.46.Fg, 62.23.Hj, 62.23.Pq, 81.20.Wk, 82.45.Xy

Citation: Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, Yu. O. Tarasenko, I. V. Zagorulko, and A. D. Zolotarenko, Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417—1430 (2021) (in Ukrainian)


REFERENCES
  1. D. V. Schur and V. A. Lavrenko, Vacuum, 44, No. 9: 897 (1993). Crossref
  2. D. V. Schur, A. Veziroglu, S. Y. Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, An. D. Zolotarenko, and Al. D. Zolotarenko, International Journal of Hydrogen Energy, 44, No. 45: 24810 (2019). Crossref
  3. Z. A. Matysina, S. Y. Zaginajchenko, D. V. Shhur, A. D. Zolotarenko, Al. D. Zolotarenko, and T. M. Gabdullin, Alternativnaya Energetika i Ekologiya, 13-15: 37 (2017) (in Russian). Crossref
  4. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, International Journal of Hydrogen Energy, 43, No. 33: 16092 (2018). Crossref
  5. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, and M. T. Gabdullin, Russian Physics Journal, 61, No. 2: 253 (2018). Crossref
  6. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and O. Ya. Krivushenko, Proc. of 10th International Conference 'Hydrogen Materials Science and Chemistry of Carbon Nanomaterials' (Sept. 22-28, 2007) (Sudak, Crimea, Ukraine: 2007).
  7. Z. A. Matysina, S. Yu. Zaginaychenko, and D. V. Schur, Rastvorimost Primesej v Metallakh, Splavakh, Intermetallidakh, Fulleritakh [Solubility of Impurities in Metals, Alloys, Intermetallics, Fullerites] (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).
  8. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, N. Veziroglu, and N. E. Scryabina, International Journal of Hydrogen Energy, 36, No. 1: 1143 (2011). Crossref
  9. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, M. V. Chimbai, N. Y. Akhanova, M. Sultangazina, and E. P. Zolotarenko, Physical Sciences and Technology, 6, No. 1-2: 46 (2019). Crossref
  10. A. A. Volodin, A. D. Zolotarenko, A. A. Bel'mesov, E. V. Gerasimova, D. V. Schur, V. R. Tarasov, S. Yu. Zaginaichenko, S. V. Doroshenko, An. D. Zolotarenko, and Al. D. Zolotarenko, Nanosistemy, Nanomaterialy, Nanotehnologii, 12, No. 4: 705 (2014).
  11. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56, No. 9-10: 504 (2018). Crossref
  12. N. Akhanova, S. Orazbayev, M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, and T. S. Ramazanov, Journal of Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019). Crossref
  13. A. G. Dubovoj, A. E. Perekos, V. A. Lavrenko, Yu. M. Rudenko, T. V. Efimova, V. P. Zalustkii, T. V. Rushitskaya, A. V. Kotko, Al. D. Zolotarenko, and An. D. Zolotarenko, Nanosistemy, Nanomaterialy, Nanotehnologii, 11, No. 1: 131 (2013) (in Russian).
  14. S. Yu. Zaginajchenko, D. V. Schur, M. T. Gabdullin, N. F. Dzhavadov, Al. D. Zolotarenko, An. D. Zolotarenko, A. D. Zolotarenko, S. H. Mamedova, G. D. Omarova, and Z. T. Mamedova, Alternativnaya Energetika i Ekologiya (ISJAEE), No. 19-21: 72 (2018) (in Russian). Crossref
  15. N. S. Anikina, O. Ya. Krivushhenko, D. V. Schur, S. Yu. Zaginajchenko, S. S. Chuprov, K. A. Mil'to, and A. D. Zolotarenko, Proc. of IX Int. Conf. 'Hydrogen Material Science and Chemistry of Metal Hydrides' (Sept. 5-11, 2005) (Sevastopol, Crimea, Ukraine), p. 848 (in Russian).
  16. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Proc. of 10th International Conference 'Hydrogen Materials Science and Chemistry of Carbon Nanomaterials' (Sept. 22-28, 2007) (Sudak, Crimea, Ukraine: 2007).
  17. D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series, 85 (2008).
  18. D. V. Schur, Z. S. Yu., E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems (2008).
  19. D. V. Schur, N. S. Astratov, A. P. Pomytkin, and A. D. Zolotarenko, Trudy VIII Mezhdunarodnoj Konferentsii Vodorodnoe Materialovedenie i Himiya (Sept. 14-20, 2003) (Sudak, Crimea, Ukraine: 2003) p. 424 (in Russian).
  20. Y. M. Shul'ga, S. A. Baskakov, A. D. Zolotarenko, E. N. Kabachkov, V. E. Muradjan, D. N. Voilov, V. A. Smirnov, V. M. Martynenko, D. V. Schur, and A. P. Pomytkin, Nanosistemy, Nanomaterialy, Nanotekhnologii, 11, No. 1: 161 (2013) (in Russian).
  21. Y. I. Sementsov, N. A. Gavriluk, G. P. Prikhod'ko, and T. A. Aleksyeyeva, Carbon Nanomaterials in Clean Energy Hydrogen Systems, 327 (2008).
  22. Y. I. Sementsov, N. A. Gavrilyuk, G. P. Prikhod'ko, and A. V. Melezhyk, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 757 (2007).
  23. G. P. Prihod'ko, N. A. Gavriljuk, L. V. Dijakon, N. P. Kulish, A. V. Melezhik, and Yu. I. Semencov, Nanosistemy, Nanomaterialy, Nanotekhnologii, 4: 1081 (2006) (in Russian).
  24. Yu. I. Sementsov, T. A. Alekseeva, M. L. Pjatkovskij, and G. P. Prihod'ko, N. A. Gavrilyuk, N. T. Kartel, Yu. E. Grabovskiy, V. F. Gorchev, and A. Yu. Chunikhin, Proc. IX International conference 'Hydrogen Materials Science and Chemistry of Carbon Nanomaterials' (Sept. 9-13, 2009) (Yalta, Crimea, Ukraine: 2009), p. 782 (in Russian).
  25. I. P. Dmytrenko, N. P. Kulish, L. V. Diyakon, N. I. Belyi, L. A. Bulavin, and I. Yu. Prylutskyy, Proc. 8th Biennial International Workshop Fullerenes and Atomic Clusters IWFAC (July 2-7, 2007) (Saint-Petersburg, Russia: 2007), p. 178.
  26. Yu. Sementsov, N. Gavriluk, T. Aleksyeyeva, and O. Lasarenko, Nanosystems, Nanomaterials, Nanotechnologies, 5, No. 2: 351 (2007).
  27. Kompozyty: Pidruchnyk z ASM [Composites: A Textbook on ASM] (Eds. D. B. Miracle and S. L. Donaldson) (ASM International: The Materials Information Company: 2001).
  28. J. A. Arsecularatne and L. C. Zhang, Recent Patents on Nanotechnology, 1, No. 3: 176 (2007). Crossref
  29. D. Eder, Chem. Rev., 110, No. 3: 1348 (2010). Crossref
  30. Yu. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, and W. Jiang, Carbon, 48, No. 6: 1743 (2010). Crossref
  31. A. M. Bondar and I. Iordache, J. Optoelectron. Adv. Mater., 8, No. 2: 631 (2006).
  32. F-H. Su, Z.-Z. Zhang, K. Wang, W. Jiang. X.-H. Men, and W.-M.Liu, Composites Part A: Applied Science and Manufacturing, 37, No. 9: 1351 (2006). Crossref
  33. B. Fényi, N. Hegman, F. Wéber, P. Arató, and Cs. Balázsi, Processing and Application of Ceramics, 1, Iss. 1-2: 57 (2007). Crossref
  34. G-B. Zheng, H. Sano, and Y. Uchiyama, Composites Part B: Engineering, 42, No. 8: 2158 (2011). Crossref
  35. S. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, J. Am. Ceram. Soc., 90, No. 5: 1667 (2007). Crossref
  36. J. Yu, J. Fan, and B. Cheng, Journal of Power Sources, 196, No. 18: 7891 (2011). Crossref
  37. O. Yu. Ivanshina, M. E. Tamm, E. V. Gerasimova, M. P. Kochugaeva, M. N. Kirikova, S. V. Savilov, and L. V. Yashina, Inorganic Materials, 47, No. 6: 618 (2011). Crossref
  38. C. Martínez, M. Canle L., M. I. Fernández, J. A. Santaballa, and J. Faria, Applied Catalysis B: Environmental, 102: Iss. 3: 563 (2011). Crossref
  39. X. L. Li, C. Li, Y. Zhang, D. P. Chu, W. I. Milne, and H. J. Fan, Nanoscale Res. Lett., 5, 1836 (2010). Crossref
  40. L. Jiang and L. Gao, J. Mater. Chem., 15, Iss. 2: 260 (2005). Crossref
  41. S.-L. Shi and J. Liang, J. Appl. Phys., 101: 023708 (2007). Crossref
  42. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, Nano Energy, 1, Iss. 1:107 (2012). Crossref
  43. P. Yu. Butyagin and A. N. Streletskii, Physics of the Solid State, 47: 856 (2005). Crossref