Properties of AlB$_{12}$–Al Electric Spark Coatings on D1 Aluminium Alloy

A. P. Umanskyi$^{1}$, M. S. Storozhenko$^{1}$, V. E. Sheludko$^{1}$, V. B. Muratov$^{1}$, V. V. Kremenitsky$^{2}$, I. S. Martsenyuk$^{1}$, M. A. Vasilkovskaya$^{1}$, A. D. Kostenko$^{1}$, A. A. Vasiliev$^{1}$, A. E. Terentiev$^{1}$, D. S. Kamenskyh$^{3}$

$^{1}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{2}$Technical Centre, NAS of Ukraine, 13 Pokrovs’ka Str., UA-04070 Kyiv, Ukraine
$^{3}$V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, N.A.S. of Ukraine, 1 Murmanska Str., UA-02094 Kyiv, Ukraine

Received: 05.05.2021. Download: PDF

The article deals with the study of the structure and properties of electric spark coatings of AlB$_{12}$–50 wt.% Al aluminium-matrix composite electrode material on D1 aluminium alloy. Fundamental possibility of such coatings obtaining is estimated by theoretical calculation of Palatnik’s criterion (0.59). Thermal conductivity coefficient and heat capacity of the composite are calculated or determined from an experiment. Mass transfer kinetics at electric spark alloying (ESA) is studied. Considering rather high values of the cathode mass gain, the coating applied in 6 modes ($E$ = 2.52 J, $\tau$ = 700 $\mu$s, ALIER-52 setup) is selected for further research. The thickness ($h$ = 380 $\mu$m), microhardness ($H_{\mu}$ = 1.86 GPa, PMT-3 tester, $P$ = 0.05 N) and wear at dry friction (13.7 mg/(km$\cdot$cm$^{2}$), MT-68 friction machine, the pin-on-disk scheme, $V$ = 4 m/s, $P$ = 0.2 MPa, friction path $S$ = 3 km) are determined for the coating. Phase composition of the coating is studied with DRON-3M diffractometer and elemental X-ray spectrum analysis of the surface and cross-section is carried out using a JEOL JSM-6490 LV scanning electron microscope equipped with an energy-dispersive X-ray microanalysis and reflected electron diffraction system. The following phases namely Al, Al$_2$O$_3$, small quantity of B, B$_2$O$_3$, Fe$_2$O$_3$, AlFeO$_3$, AlB$_2$ and AlB$_{10}$ are revealed by X-ray analysis in the coating. The Al content (reaching 89.92 wt.% in certain zones) is more than the other phases content. This affects the coating strength under dry friction condition. The absence of the AlB$_{12}$ phase is noteworthy. It can be explained by thermo-oxidative destruction of aluminium dodecaboride under severe conditions of ESA.

Key words: AlB$_{12}$–Al, ESA, mass transfer kinetics, structure, phase composition, microhardness, wear.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i11/1443.html

DOI: https://doi.org/10.15407/mfint.43.11.1443

PACS: 62.20.Qp, 68.55.Nq, 81.05.Je, 81.05.Mh, 81.15.Rs, 81.40.-z

Citation: A. P. Umanskyi, M. S. Storozhenko, V. E. Sheludko, V. B. Muratov, V. V. Kremenitsky, I. S. Martsenyuk, M. A. Vasilkovskaya, A. D. Kostenko, A. A. Vasiliev, A. E. Terentiev, and D. S. Kamenskyh, Properties of AlB$_{12}$–Al Electric Spark Coatings on D1 Aluminium Alloy, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1443—1454 (2021)


REFERENCES
  1. I. N. Fridlyander, Tekhnologiya Lyogkih Splavov, 4: 12 (2002) (in Russian).
  2. A. A. Mityaev, S. B. Belikov, and I. P. Volchok, Vestnik Dvigatelestroeniya, 1: 155 (2006) (in Russian).
  3. Aluminum Alloys: Preparation, Properties and Application (Ed. Erik L. Persson) (New York, NY, USA: Nova Science Publishers Inc.: 2011).
  4. ASM Specialty Handbook®. Aluminum and Aluminum Alloys (Ed. by J. R. Davis&Associates) (Russell Township, Geauga County, OH, USA: ASM International: 1993).
  5. V. A. Duyunova, A. A. Leonov, and S. V. Molodtsov, Trudy VIAM, 2(86): 22 (2020) (in Russian). Crossref
  6. R. Cobden, Aluminum: Physical Properties, Characteristics and Alloys (TALAT Lecture 1501: EAA: 1994).
  7. Aluminum Alloys: Their Physical and Mechanical Properties (Eds. J. Hirsch, B. Skrotzki, and G. Gottstein) (Weinheim: Germany: Wiley-VCH Verlag GmbH & Co. KGaA: 2008), vol. 1.
  8. V. D. Aleksandrov, Poverhnostnoe Uprochnenie Alyuminievykh Splavov [Surface Hardening of Aluminum Alloys] (Moscow: Tekhnopoligrafcentr: 2002) (in Russian).
  9. O. Yu. Usanova, A. V. Ryazantseva, I. L. Savelev, and V. S. Timohin, J. Phys.: Conf. Ser., 1515, No. 2: 022074 (2020). Crossref
  10. V. I. Agafii, V. I. Petrenko, V. M. Fomichev, V. I. Yurchenko, E. V. Yurchenko, and A. I. Dikusar, Surf. Eng. Appl. Elect., 49, No.3: 181 (2013). Crossref
  11. G. Renna, P. Leo, G. Casalino, and E. Cerri, Adv. Mater. Sci. Eng., Article ID 8563054, 11 pages (2018). Crossref
  12. Q. Zhu, B. Zhang, X. Zhao, and B. Wang, Coatings, 10, Iss. 2: 128 (2020). Crossref
  13. Ya. S. Kuzin, M. A. Fomina, I. A. Kozlov, and A. E. Kutyrev, Trudy VIAM, 4-5 (88): 70 (2020) (in Russian). Crossref
  14. M. Ezzat, M. A. El-Waily, M. Abdel-Rahman, and Y. Ismail, Surf. Rev. Lett., 25, No. 4: 1850079 (2018). Crossref
  15. W. Pakieła, L. A. Dobrzanski, K. Labisz, T. Tanski, K. Basa, and M. Roszak, Arch. Metall. Mater., 61, No. 3: 1343 (2016). Crossref
  16. V. A. Duyunova, I. A. Kozlov, M. S. Oglodkov, and A. A. Kozlova, Trudy VIAM, 8 (80): 79 (2019) (in Russian). Crossref
  17. A. D. Verkhoturov, I. A. Podchernyaeva, L. F. Pryadko, and F. F. Egorov, Elektrodnye Materialy dlya Elektroiskrovogo Legirovaniya [Electrode Materials for Electrospark Alloying] (Moscow: Nauka: 1988) (in Russian).
  18. A. D. Verkhoturov and S. V. Nikolenko, Uprochnyayushchie Tekhnologii i Pokrytiya, No. 2: 13 (2010) (in Russian).
  19. A. D. Verkhoturov, V. I. Ivanov, and L. A. Konevtsov, Surf. Eng. Appl. Elect., 55, No. 3: 241 (2019). Crossref
  20. O. O. Vasiliev, V. B. Muratov, and T. I. Duda, Physics and Chemistry of Solid State, 18, No. 3: 358 (2017). Crossref
  21. P. S. Kisly, V. A. Neronov, T. A. Prikhna, and Yu. V. Bevza, Boridy Aljuminiya [Aluminum Borides] (Kiev: Naukova Dumka: 1990) (in Russian).
  22. V. B. Muratov, P. V. Mazur, V. V. Garbuz, E. V. Kartuzov, and O. O. Vasiliev, Sposib Oderzhannya Poroshku Dodekaborydu Alyuminiyu AlB12 [The Method of Obtaining of AlB12 Aluminium Dodecaboride Powder]: Patent 107193 UA. MPK (2016.01), C01B 35/04, C01F 7/00 (Promyslova Vlasnist, No. 10: 4.52) (2016) (in Ukrainian).
  23. P. V. Mazur, V. B. Muratov, V. V. Garbuz, E. V. Kartuzov, and O. O. Vasiliev, Udarostijka Keramika na Osnovi Dodekaborydu Alyuminiyu [Aluminium Dodecaboride-Based Crash-Proof Ceramics]: Patent 107259 UA. MPK (2016.01), C22C 1/04, C01B 35/00, B22F 3/04, C04B 111/20 (Promyslova Vlasnist, No. 10: 4.60) (2016) (in Ukrainian).
  24. G. N. Dulnev and Yu. P. Zarichnyak, Teploprovodnost Smeseyi Kompozitsionnykh Materialov [Thermal Conductivity of Mixtures and Composite Materials] (Leningrad: Energiya: 1974) (in Russian).
  25. L. S. Palatnik, Dokl. Acad. Nauk SSSR, LXXXIX, No. 3: 455 (1953) (in Russian).
  26. O. S. Manakova, A. E. Kudryashov, and E. A. Levashov, Surf. Eng. Appl. Elect., 51, No. 5: 413 (2015). Crossref
  27. metallicheckiy-portal.ru/marki_metallov/alu/D1
  28. thermalinfo.ru
  29. V. S. Kovalenko, A. D. Verkhoturov, L. F. Golovko, and I. A. Podchernyaeva, Lazernoe i Electroerozionnoe Uprochnenie Materialov [Laser and Electroerosion Hardening of Materials] (Moscow: Nauka: 1986) (in Russian).
  30. T. Atoda, I. Higashi, and M. Kobayashi, Sci. Pap. Inst. Phys. Chem. Res., 61, No. 3: 92 (1967).
  31. V. I. Mikhailov, Poluchenie i Fiziko-Himicheskie Svoystva Materialov na Osnove Nanodispersnykh Oksidov Alyuminiya i Zheleza (III) [Obtaining and Physical-Chemical Properties of Materials Based on Nanodispersed Oxides of Aluminum and Iron (III)] (Thesis of Disser. for Cand. Chem. Sci.) (Syktyvkar: Institute of Chemistry Komi Science Centre UB RAS: 2016) (in Russian).
  32. L. V. Koroleva, Recent Advances in Abrasives Research (Ed. Ing. Dirk Bähre, PhD) (New York, NY, USA: Nova Science Publishers Inc.: 2013), p. 173.
  33. S. Okada and T. Atoda, J. Ceram. Association, Japan, 88, Iss. 1021: 547 (1980) (in Japanese). Crossref
  34. G. Will, Zeitschrift für Kristallogr., 128: 156 (1969). Crossref
  35. A. P. Abramchuk, G. A. Bovkun, V. V. Mikhailov, and Yu. G. Tkachenko, Electronnaya Obrabotka Materialov, 3: 25 (1987) (in Russian).