Modelling of Radiation Effect on Deformation and Changes in the Mechanical Properties of Zr–Nb Binary Alloy

O. M. Shchokotova, D. O. Kharchenko, V. O. Kharchenko, V. V. Kupriienko, S. V. Kokhan

Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine

Received: 16.06.2021; final version - 15.09.2021. Download: PDF

The neutron irradiation influence on the mechanical properties change of the binary Zr–Nb alloy under loads in the form of tensile deformation, compression and simple shear is considered. Based on the phase field model with taking into account reaction rate theory in order to determine the defects dynamics and with the elastic component introduction in the framework of nonlinear elasticity theory, the numerical modelling of alloy sample preparation, neutron irradiation of the prepared sample and mechanical loading of alloy samples before and after irradiation is performed. Stress–strain curves, evolution of elastic deformation and displacement fields’ distribution are analysed. The formation and dynamics of slips forming dislocation dipoles are studied. The influence of irradiation temperature, dose rate and strain rate on the ultimate strength and yield strength is studied. The dose dependences of the ultimate strength during tension, compression and shear are obtained. The influence of irradiation and strain rate on the elastic energy density behaviour is analysed.

Key words: binary alloy, irradiation, defects, deformation, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i11/1489.html

DOI: https://doi.org/10.15407/mfint.43.11.1489

PACS: 61.72.Hh, 61.72.Lk, 61.80.-x, 62.20.D-, 62.20.F-, 83.50.-v

Citation: O. M. Shchokotova, D. O. Kharchenko, V. O. Kharchenko, V. V. Kupriienko, and S. V. Kokhan, Modelling of Radiation Effect on Deformation and Changes in the Mechanical Properties of Zr–Nb Binary Alloy, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1489—1521 (2021) (in Ukrainian)


REFERENCES
  1. G. S. Was, Fundamentals of Radiation Materials Science (Berlin, Heidelberg: Springer-Verlag: 2007).
  2. Radiation Effects Design Handbook. Sec. 7: Structural Alloys (Ed. M. Kangilaski) (Washington, D.C.: NASA Contractor Report: 1971).
  3. V. F. Zelenskij, I. M. Neklyudov, and L. S. Ozhigov, Nekotorye Problemy Fiziki Radiatsionnykh Povrezhdenij Materialov [Some Problems of the Physics of Radiation Damage of Materials] (Kyiv: Naukova Dumka: 1979) (in Russian).
  4. Y. M. Neklyudov and N. V. Kamyshanchenko, Osnovy Fiziki Prochnosti i Plastichnosti Metallov [Fundamentals of Physics of Strength and Plasticity of Metals] (Belgorod: BelGU: 2003) (in Russian).
  5. V. N. Voevodin and I. M. Neklyudov, Evoljutsiya Strukturno-Fazovogo Sostoyaniya i Radiatsionnaya Stojkost Konstruktsionnykh Materialov [Structural-Phase State Evolution and Radiation Resistance of Structural Materials] (Kyiv: Naukova Dumka: 2006) (in Russian).
  6. S. J. Zinkle, Comprehensive Nuclear Materials (Ed. R. F. Konings) (Amsterdam: Elsevier: 2012), vol. 1, p. 65.
  7. M. L. Grossbeck, Comprehensive Nuclear Materials (Ed. R. F. Konings) (Amsterdam: Elsevier: 2012), vol. 1, p. 99. Crossref
  8. M. Nastar and F. Soisson, Comprehensive Nuclear Materials (Ed. R. F. Konings) (Amsterdam: Elsevier: 2012), vol. 1, p. 471. Crossref
  9. G. I. Miller, Zirconium (London: Butterworths Scientific Publications: 1957).
  10. D. L. Douglass, Atomic Energy Review, Supplement. The Metallurgy of Zirconium (Vienna: International Atomic Energy Agency: 1971).
  11. A. S. Zajmovskij, A. V. Nikulina, and N. G. Reshetnikov, Tsirkonievye Splavy v Yadernoy Eenergetike [Zirconium Alloys in Nuclear Power] (Moscow: Energoatomizdat: 1981) (in Russian).
  12. F. Onimus and J. L. Bechade, Comprehensive Nuclear Materials (Ed. R. F. Konings) (Amsterdam: Elsevier: 2012), vol. 4, p. 1. Crossref
  13. H. Yu, Z. Yao, and M. R. Daymond, J. Nucl. Mater., 493: 84 (2017). Crossref
  14. S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys (Oxford: Elsevier Science, Pergamon Material Series: 2007), vol. 12.
  15. R. A. Holt, J. Nucl. Mater., 35: 322 (1970). Crossref
  16. T. P. Chernyaeva, V. M. Grytsyna, E. A. Mykhaylov, R. L. Vasilenko, and E. A. Slabospickaya, VANT, 2: 95 (2011).
  17. V. Perovic, G. C. Weatherly, and R. G. Fleck, Can. Metall. Q, 24: 253 (1985). Crossref
  18. D. Srivastava, P. Mukhopadhyaya, S. Banerjeea, and S. Ranganathan, Mater. Sci. Eng., A, 288: 101 (2000). Crossref
  19. N. Saibaba, S. K. Jha, S. Tonpe, K. Vaibhaw, V. Deshmukh, S. V. Ramana Rao, K. V. Mani Krishna, S. Neogy, D. Srivastava, G. K. Dey, R. V. Kulkarni, B. B. Rath, E. Ramadasan, and S. A. Anantharaman, J. ASTM. Int., 8, Iss. 6: JAIOAD (2011). Crossref
  20. R. Tewari, D. Srivastava, G. K. Dey, J. K. Chakravarty, and S. Banerjee, J. Nucl. Mater., 383, Nos. 1-2: 153 (2008). Crossref
  21. K. Nuttall and D. Faulkner, J. Nucl. Mater., 67: 131 (1977). Crossref
  22. Y. Etoh and S. Shimada, J. Nucl. Mater., 200: 59 (1993). Crossref
  23. M. Griffiths, J. Nucl. Mater., 159: 190 (1988). Crossref
  24. V. N. Shishov, M. M. Peregud, A. V. Nikulina, G. P. Kobylyansky, A. E. Novoselov, Z. E. Ostrovsky, A. V. Obukhov, and Y. V. Pimenov, J. ASTM Int., 2, Iss. 8: JAI12431 (2005). Crossref
  25. S. Doriot, D. Gilbon, J. L. Bechade, M. Mathon, L. Legras, and J. P. Mardon, J. ASTM Int., 2, Iss. 7: JAI2332 (2005). Crossref
  26. C. D. Cann, C. B. So, R. C. Styles, and C. E. Coleman, J. Nucl. Mater., 205: 267 (1993). Crossref
  27. C. Song, CNL Nuclear Review, 5(1): 17 (2016). Crossref
  28. Z. L. Pan, S. St. Lawrence, P. Davies, M. Griffiths, and S. Sagat, Zirconium in the Nuclear Industry: 14th Int. Symp. (Eds. P. Rudling and B. Kammenzind) (West Conshohocken, PA: ASTM Int.: 2005), p. 759. Crossref
  29. S. Sagat, C. E. Coleman, M. Griffiths, and B. J. S. Wilkins, Zirconium in the Nuclear Industry: 10th Int. Symp. (Eds. A. M. Garde and E. R. Bradley) (Philadelphia, PA, USA: ASTM STP: 1994), p. 35.
  30. C. Coleman, M. Griffiths, V. Grigoriev, V. Kiseliov, B. Rodchenkov, and V. Markelov, J. ASTM Int., 4, No. 10: JAI101111 (2007). Crossref
  31. D. D. Himbeault, C. K. Chow, and M. P. Puls, Metal. Mater. Trans. A, 25: 135 (1994). Crossref
  32. M. Griffiths, P. H. Davies, W. G. Davies, and S. Sagat, Zirconium in the Nuclear Industry: 13th Int. Symp. (Eds. G. Moan and P. Rudling) (West Conshohocken, PA, USA: ASTM Int.: 2002), p. 507.
  33. C. R. Cupp, J. Nucl. Mater., 6, No. 3: 241 (1962). Crossref
  34. A. Sawatzky, The Effect of Neutron Irradiation on the Mechanical Properties of Hydrided Zirconium Alloys (Ontario: AECL: 1964).
  35. B. A. Cheadle, The Physical Metallurgy of Zirconium Alloys (Ontario: CRNL: 1975).
  36. F. Long, L. Balogh, D. W. Brown, P. Mosbrucker, T. Skippon, C. D. Judge, and M. R. Daymond, Acta Mater., 102: 352 (2016). Crossref
  37. Q. Wang, F. Long, Z. Wang, N. Guo, and M. R. Daymond, J. Nucl. Mater., 512: 371 (2018). Crossref
  38. Q. Dong, H. Qin, Z. Yao, and M. R. Daymond, Materials and Design, 161: 147 (2019). Crossref
  39. G. P. Kobylyanskii and A. E. Novoselov, Radiatsionnaya Stoykost Tsirkoniya i Splavov na Ego Osnove [Radiation Resistance of Zirconium and Its Alloys]: Handbook on Reactor Materials Science (Ed. V. A. Tsykanov) (Dimitrovgrad: Russian State Scientific Center Research Inst. Atomic Reactors: 1996) (in Rus-sian).
  40. P. V. Fedotov, L. P. Loshmanov, and A. V. Kostyukhina, Russ. Metall., 2014: 762 (2014). Crossref
  41. H. L. Yang, S. Kano, Y. Matsukawa, J. J. Shen, Z. S. Zhao, Z. G. Duan, D. Y. Chen, K. Murakami, Y. F. Li, Y. Satoh, and H. Abe, J. Nucl. Mater., 495: 138 (2017). Crossref
  42. J. W. Cahn, Acta Metall., 9: 795 (1961). Crossref
  43. J. W. Cahn, Acta Metall., 11: 1275 (1963). Crossref
  44. J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 28: 258 (1958). Crossref
  45. J. Liu and P. Bellon, Phys. Rev. B, 66: 020303 (2002). Crossref
  46. G. Demange, L. Luneville, V. Pontikis, and D. Simeone, J. Appl. Phys., 121: 125108 (2017). Crossref
  47. R. A. Enrique and P. Bellon, Phys. Rev. Lett., 84: 2885 (2000). Crossref
  48. D. O. Kharchenko and V. O. Kharchenko, Radiat. Eff. Defects Solids, 171, Nos. 11-12: 819 (2016). Crossref
  49. D. O. Kharchenko, V. O. Kharchenko, O. M. Shchokotova, X. Wu, B. Wen, L. Wu, and W. Zhang, Radiat. Eff. Defects Solids., 173: 527 (2018). Crossref
  50. H.-C. Yu and W. Lu, Acta Mater., 53: 1799 (2005). Crossref
  51. Y. Li, S. Hu, X. Sun, and M. Stan, npj Comput. Mater., 3: 16 (2017). Crossref
  52. D. O. Kharchenko, V. O. Kharchenko, and A. I. Bashtova, Eur. Phys. J. B, 89: 123 (2016). Crossref
  53. D. O. Kharchenko, V. O. Kharchenko, Y. M. Ovcharenko, O. B. Lysenko, I. A. Shuda, L. Wu, and R. Pan, Condens. Matter. Phys., 21: 13002 (2018). Crossref
  54. Akira Onuki, Phase Transition Dynamics (Cambridge : Cambridge University Press: 2002). Crossref
  55. A. Minami and A. Onuki, Phys. Rev. B, 70: 184114 (2004). Crossref
  56. A. Onuki, A. Furukawa, and A. Minami, Pramana J. Phys., 64, No. 5: 661 (2005). Crossref
  57. D. O. Kharchenko, O. M. Shchokotova, and I. O. Lysenko, Metallofiz. Noveishie Tekhnol., 35, No. 12: 1697 (2013) (in Russian).
  58. D. O. Kharchenko, O. M. Shchokotova, I. O. Lysenko, and V. O. Kharchenko, Radiat. Eff. Defects Solids, 170: 584 (2015). Crossref
  59. Ch. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Appl. Phys. Lett., 102: 083102 (2013). Crossref
  60. Z. L. Liu, X. C. You, and Z. Zhuang, Int. J. Solids Struct., 45: 3674 (2008). Crossref
  61. A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, and M. J. Alava, Sci. Rep., 8: 6914 (2018). Crossref
  62. Z. Chen , Y. Gan, and L. M. Shen, Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano (Ed. G. C. Sih) (Springer, 2007), p. 67.
  63. Y. Guo, Z. Zhuang, X.Y. Li, and Z. Chen, Int. J. Solids Struct., 44: 1180 (2007). Crossref
  64. D. O. Kharchenko, O. M. Shchokotova, V. O. Kharchenko, V. V. Kupriienko, S. V. Kokhan, X. Wu, and L. Wu, Radiat. Eff. Defects Solids, 175: 602 (2020). Crossref
  65. I. Loginova, J. Odqvist, G. Amberg, and J. Agren, Acta Mater., 51: 1327 (2003). Crossref
  66. G. Choudhuri, S. Chakraborty, D. Srivastava, and G. K. Dey, Results in Physics, 3: 7 (2013). Crossref
  67. N. Saunders and A. P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Ed. R. W. Cahn) (Oxford: Pergamon Press: 1998), vol. 1.
  68. A. T. Dinsdale, Calphad, 15, No. 4: 317 (1991). Crossref
  69. S. I. Golubov, A. V. Barashev, and R. E. Stoller, Comprehensive Nuclear Materials (Ed. R. F. Konings) (Amsterdam: Elsevier: 2012), vol. 1, p. 357. Crossref
  70. https://www.sgte.net/en/free-pure-substance-database
  71. M. J. Norgett, M. T. Robinson, and I. M. Torrens, Nucl. Eng. Des., 33: 50 (1975). Crossref
  72. A. S. Bakaj and A. A. Turkin, J. Nucl. Mater., 152, Iss. 2-3: 331 (1988). Crossref
  73. A. A. Turkin, A. V. Buts, and A. S. Bakai, J. Nucl. Mater., 305: 134 (2002). Crossref
  74. H. Wiedersich, P. R. Okamoto, and N. Q. Lam, J. Nucl. Mater., 83: 98 (1979). Crossref
  75. C. H. Woo, J. Nucl. Mater., 159: 237 (1988). Crossref
  76. P. Ehrhart and B. Schönfeld, Point Defects and Defect Interactions in Metals (Eds. J. I. Takamura, M. Doyama, and M. Kiritani) (Amsterdam: North-Holland Pub.: 1982), p. 47.
  77. W. Frank, J. Nucl. Mater., 159: 122 (1988). Crossref
  78. D. J. Bacon, J. Nucl. Mater., 159: 176 (1988). Crossref
  79. Y. N. Osetsky, D. J. Bacon, and N. de Diego, Metall. Mater. Trans. A, 33: 777 (2002). Crossref
  80. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Phys. Usp., 39: 1 (1996). Crossref
  81. D. O. Kharchenko, V. O. Kharchenko, A. I. Bashtova, and I. O. Lysenko, Phys. A, 463: 152 (2016). Crossref
  82. G. L. Kulchinski and J. L. Brimhall, American Society for Testing and Materials Report No. ASTM-STP 529 (Philadelphia: ASTM: 1973), p 258.
  83. A. V. Barashev, S. I. Golubov, and R. E. Stoller, J. Nucl. Mater., 461: 85 (2015). Crossref
  84. L. Wu, D. O. Kharchenko, V. O. Kharchenko, O. B. Lysenko, V. Kupriienko, S. Kokhan, I. A. Shuda, and R. Pan, Condens. Matter. Phys., 23: 13604 (2020). Crossref
  85. A. A. Semenov and C. H. Woo, J. Phys. D: Appl. Phys., 34: 3500 (2001). Crossref
  86. A. Onuki, Phys. Rev. E, 68: 061502 (2003). Crossref
  87. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (New York: Pergamon: 1973).
  88. W. G. Wolfer, Comprehensive Nuclear Materials (Ed. R. F. Konings) (Amsterdam: Elsevier: 2012), vol. 1, p. 1.
  89. A. Patra, C. N. Tom, and S. I. Golubov, Philos. Mag., 97: 2018 (2017). Crossref
  90. F. Garzarolli, R. Adamson, and K. Coleman, Microstructure of Zirconium Alloys and Effects on Performance (Molnlycke: A.N.T. International: 2015).