Thermophysical Properties of Aluminium of Grade A5N and Its Alloys Doped with Silicon, Copper and Rare-Earth Metals

B. N. Gulov$^{1}$, Z. Nizomov$^{2}$, F. S. Tabarov$^{2}$

$^{1}$Tajik National University, 17 Rudaki Ave., TJ-734025 Dushanbe, Tajikistan
$^{2}$Dushanbe Branch of National University of Science and Technology MISiS, 7 Nazarshoeva Str., TJ-734012 Dushanbe, Tajikistan

Received: 04.04.2020; final version - 08.09.2021. Download: PDF

The kinetics of cooling of the aluminium grade of the A5N, its alloys doped with silicon, copper, and rare-earth metals in a wide temperature range were measured. It revealed that the process of cooling of the aluminium and its alloys has a relaxation behaviour. An experimental study of the specific heat and heat transfer coefficient of these substances is carried out. According to experimental data, the temperature dependence of the heat transfer coefficient for pure metals is calculated. It is shown that the values of heat transfer coefficients of copper, aluminium, and zinc are different. To determine the heat capacity of doped alloys for each group is recommended to define the coefficient of heat transfer of the initial alloy.

Key words: aluminium A5N, cooling, specific heat capacity, coefficient of heat transfer.



PACS: 07.05.Kf, 44.10.+i, 64.60.-i, 64.75.-g

Citation: B. N. Gulov, Z. Nizomov, and F. S. Tabarov, Thermophysical Properties of Aluminium of Grade A5N and Its Alloys Doped with Silicon, Copper and Rare-Earth Metals, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1553—1562 (2021)

  1. Thermophysical Properties of Materials for Nuclear Engineering: Tutorial for Students of Specialty 'Nuclear Power Plants' (Ed. P. L. Kirillov) (Obninsk: 2006), p. 182.
  2. A. R. Luts and A. A. Suslina, Alyuminiy i Ego Splavy [Aluminium and Its Alloys] (Samara: Samarskiy Gosudarstvennyy Tekhnicheskiy Universitet: 2013) (in Russian).
  3. R. H. Dittman and M. W. Zemansky, Heat and Thermodynamics (New Delhi: Tata McGraw Hill: 2007).
  4. I. N. Ganiev, S. E. Otadzhonov, N. F. Ibrokhimov, and M. Makhmudov, High Temperature, 57: 22 (2019). Crossref
  5. I. N. Fridlyander, Alyuminievye Splavy. Sostav, Svoystva, Tekhnologiya, Primenenie. Spravochnik [Aluminum Alloys: Composition, Properties, Technology, Application. A Reference Book], (Ed. I. N. Fridlyander) (Kiev: Komintekh: 2005) (in Russian).
  6. V. E. Zinoviev, Thermo Physical Properties of Metals at High Temperatures. Handbook (Moscow: Metallurgiya: 1989) (in Russian).
  7. Z. Nizomov, B. N. Gulov, I. N. Ganiev, R. Kh. Saidov, and A. E. Berdiev, Dokl. Akad. Nauk Resp. Tadzh., 917: 54 (2011).
  8. Z. Nizomov, R. Kh. Saidov, B. N. Gulov, and Kh. Kh. Niezov, Izv. Akad. Nauk Resp. Tadzh., Otd. Fiz.-Mat., Khim., Geolog. Tekh. Nauk, 79: 3 (2016).
  9. J. V. Golovenko, S. L. Gafner, L. V. Redel, and J. J. Gafner, Formation of Structure in Nanoclusters Au, Ni and Cu at Crystallization Processes. Journal Nanomaterials and Nanostructures - XXI Century, No. 3: 15 (2010).
  10. A. E. Berdiev, I. N. Ganiev, H. H. Niyozov, F. U. Obidov, and R. A. Ismoilov, Materials of Electronics Engineering, 224: 17 (3) (2014). Crossref
  11. V. S. Zolotorevskii and N. A. Belov, Metallovedenie Liteynykh Alyuminievykh Splavov (Metal Science of Cast Aluminum Alloys) (Moscow: Mosk. Inst. Stali Splavov: 2005) (in Russian).
  12. G. K. Sigworth, AFS Trans., 7: 91 (1983).
  13. W. J. Boettinger and U. R. Kattner, Metall. Trans. A, 33: 1779 (2002). Crossref
  14. Y. Xiao, S. Xie, J. Liu, and T. Wang, Practical Handbook of Aluminum Technology (China, Beijing: Metallurgical Industry Press: 2005.
  15. H. Feufel, T. Gödecke, H. Lukas, and F. Sommer, J. Alloys Compd., 31: 274 (1997). Crossref