Ballistic Resistance of Layered Titanium Armour Made Using Powder Metallurgy and Additive 3D Printing

P. E. Markovsky$^{1}$, D. G. Savvakin$^{1}$, O. O. Stasiuk$^{1}$, S. H. Sedov$^{2}$, V. A. Golub$^{2}$, D. V. Kovalchuk$^{3}$, S. V. Prikhodko$^{4}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$The National Defence University of Ukraine named after Ivan Chernyakhovskyi, 28 Povitroflotskyi Ave., UA-03049 Kyiv, Ukraine
$^{3}$JSC ‘NVO Chervona Hvylia’, 28 Dubrovytska Str., UA-04114 Kyiv, Ukraine
$^{4}$University of California, Los Angeles, CA 90095, USA

Received: 30.09.2021. Download: PDF

Microstructure and antiballistic protection characteristics for two types of titanium-based layered materials are studied. Binary layered armour material consisted of Ti–6Al–4V alloy and Ti–6Al–4V–10% vol. TiC metal matrix composite layers are produced using powder metallurgy and subsequent HIP treatment. Ternary Ti–6Al–4V/CP–Ti/Ti–6Al–4V armour plate is made using additive manufacturing technology. Both types of materials demonstrated a significant superiority in ballistic resistance to armor-piercing incendiary cartridges compared to uniform titanium alloys. Material microstructure and hardness, projectile penetration depth and kinetic energy are analysed to understand contribution of each layer in projectile retardation and energy dissipation. Hard front composite layer effectively retards the projectiles than softer and ductile Ti–6Al–4V and CP–Ti layers, while combination of these materials ensures lower penetration depth and absence of armour cracking on high-energy ballistic impact.

Key words: titanium alloys, metal matrix composites, layered materials, ballistic resistance, titanium armour, powder metallurgy, additive manufacturing, hot isostatic pressing.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i12/1573.html

DOI: https://doi.org/10.15407/mfint.43.12.1573

PACS: 45.40.Gj, 81.05.Bx, 81.05.Mh, 81.40.-z

Citation: P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, S. H. Sedov, V. A. Golub, D. V. Kovalchuk, and S. V. Prikhodko, Ballistic Resistance of Layered Titanium Armour Made Using Powder Metallurgy and Additive 3D Printing, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1573—1588 (2021)


REFERENCES
  1. G. Luetjering and J. C. Williams, Titanium (Berlin: Springer: 2007).
  2. J. Fanning, J. Mater. Eng. Perform., 14: 686 (2005). Crossref
  3. J. S. Montgomery and M. G. Y. Wells, JOM, No. 4: 29 (2001). Crossref
  4. P. E. Markovsky, D. G. Savvakin, O. M. Ivasishin, V. I. Bondarchuk, and S. V. Prikhodko, J. Mater. Eng. Perform., 28, Iss. 9: 5772 (2019). Crossref
  5. O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, M. Norouzi Rad, and S. V. Prikhodko, J. Mater. Processing Technol., 269: 172 (2019). Crossref
  6. O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, V. A. Golub, V. I. Mirnenko, S. H. Sedov, V. A. Kurban, and, S. L. Antonyuk, Usp. Fiz. Met., 20, No. 2: 285 (2019). Crossref
  7. S. Prikhodko, P. Markovsky, D. Savvakin, O. Stasiuk, and O. Ivasishin, Mater. Sci. Forum, 941: 1384 (2018). Crossref
  8. S. V. Prikhodko, D. G. Savvakin, P. E. Markovsky, O. O. Stasuk, J. Penney, A. A. Shirzadi, P. D. Davies, and H. M. Davies, Sci. Technol. Welding Joining, 25, Iss. 6: 518 (2020). Crossref
  9. S. V. Prikhodko, D. G. Savvakin, P. E. Markovsky, O. O. Stasuk, J. Penney, N. Enzingen, M. Gaskil, and F. Deley, Welding in the World, 65: 415 (2021). Crossref
  10. V. Samarov, PMTi 2019: Powder Metallurgy and Additive Manufacturing of Titanium Conference (Sept. 24-27, 2019) (Salt Lake City, Utah: University of Utah).
  11. W. E. Frazier, J. Mater. Eng. Perform., 23, No. 6: 1917 (2014). Crossref
  12. Shunyu Liu and Yung C. Shin, Materials and Design, 164: 107552 (2019). Crossref
  13. O. M. Ivasishin and V. S. Moxson, Titanium Powder Metallurgy. Science, Technology and Applications (Eds. Ma Qian and F. H. Froes) (Elsevier: 2015), p. 117. Crossref
  14. H.-xing Wang, Yan Zhang, Sh.-feng Yang, and B.-yi Liu, Trans. Nonferrous Met. Soc. China, 24, Iss. 2: 449. Crossref
  15. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30(7): 5307 (2021). Crossref
  16. P. Wanjara, P. A. L.Drew, J. Root, and S. Yue, Acta Mater., 48, Iss. 7: 1443 (2000). Crossref
  17. P. E. Markovsky, V. I. Bondarchuk, S. V. Akhonin, and A. V. Berezos, Proceedings of 14th World Conference on Ti (10-15 June, 2019, Nantes, France) MATEC Web of Conferences, 321, 11036 (2020). Crossref
  18. J. K. Lee, Analysis of Multi-Layered Materials under High Velocity Impact Using CTH (Thesis of Disser. for Master Sci. in Aeronautical Engineering), 2685 (2008). Crossref
  19. P. E. Markovsky, D. G. Savvakin, S. V. Prikhodko, O. O. Stasyuk, S. H. Sedov, V. A. Golub, V. A. Kurban, and E. V. Stecenko, Metallofiz. Noveishie Technol., 42, No. 11: 1509 (2020).