Investigation of Effects of Graphene Nanoplatelets Addition on Mechanical Properties of 7075-T6 Aluminium Matrix Hybrid Fibre Metal Laminates

N. A. Gurbanov, M. B. Babanli

Azerbaijan State Oil and Industrial University, 20 Azadliq, AZ-1010 Baku, Azerbaijan

Received: 18.03.2021; final version - 15.09.2021. Download: PDF

In this study, hybrid fibre metal laminates (FMLs) are produced using 1 mm thick 7075-T6 quality Al plate, unidirectional carbon fibre fabric and epoxy resin in 4/3 stacking order. The effect of adding 0.5% GNP to pure epoxy resin and epoxy resin on the mechanical properties of hybrid FMLs is investigated. As a result of the experiments, it is observed that adding 0.5% graphene nanoplatelets (GNP) to the epoxy resin increased the tensile strength of hybrid FMLs by about 2.42% and the three-point bending strength by about 5%. After mechanical tests, interface microstructures of FMLs are examined under digital microscope and it is observed that 0.5% GNP addition positively affected the delamination between metal and fibre reinforcement in FMLs.

Key words: hybrid fibre metal laminate, 7075-T6 Al, graphene nanoplatelets, mechanical properties, delamination.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i12/1589.html

DOI: https://doi.org/10.15407/mfint.43.12.1589

PACS: 62.20.M-, 81.05.Bx, 81.05.Lg, 81.05.Ni, 81.70.Bt

Citation: N. A. Gurbanov and M. B. Babanli, Investigation of Effects of Graphene Nanoplatelets Addition on Mechanical Properties of 7075-T6 Aluminium Matrix Hybrid Fibre Metal Laminates, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1589—1599 (2021)


REFERENCES
  1. S. K. Mazumdar, Composites Manufacturing: Materials, Product and Process Engineering (USA: CRC Press LLC: 2001). Crossref
  2. M. Kashfi, G. H. Majzoobi, N. Bonora, G. Iannitti, A. Ruggiero, and E. Khademi, Int. J. Mech. Sci., 131-132: 75 (2017). Crossref
  3. A. Salve, R. Kulkarni, and A. Mache, Int. J. Eng. Technol. Sci., 3, No. 2: 71 (2016). Crossref
  4. J. Thomas, Air & Space Europe, 3, Iss. 3-4: 35 (2001). Crossref
  5. K. Logesh, V. K. Bupesh, V. H. Nair, K. M. Sreerag, K. M. Vishvesvaran, and M. Balaji, Int. J. Mech. Eng. Technol., 8, Iss. 10: 561 (2017).
  6. M. E. Kazemi, L. Shanmugam, L. Yang, and J. Yang, Composites Part A: Appl. Sci. Manufact., 128, Art. number 105679 (2020). Crossref
  7. M. Kashfi, G. H. Majzoobi, N. Bonora, G. Iannitti, A. Ruggiero, and E. Khademi, Eng. Fracture Mech., 206: 21 (2019). Crossref
  8. M. Abouhamzeh, J. Sinke, K.M.B. Jansen, and R. Benedictus, Composite Structures, 133, Iss. 1: 902 (2015). Crossref
  9. J. Sinke, Appl. Compos. Mater., 10: 293 (2003). Crossref
  10. H. Ning, J. Li, N. Hu, Ch.Yan, Ya. Liu, L. Wu, F. Liu, and J. Zhang, Carbon, 91: 224 (2015). Crossref
  11. Sh. U. Khan and J.-K. Kim, Carbon, 50, Iss. 14: 5265 (2012). Crossref
  12. M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Yu, and N. Koratkar, ACS Nano, 3, No. 12: 3884 (2009). Crossref
  13. S. A. Sydlik, J.-H. Lee, J. J. Walish, E. L. Thomas, and T. M. Swager, Carbon, 59: 109 (2013). Crossref
  14. Yu. Zhou, F. Pervin, Sh. Jeelani, and P. K. Mallick, J. Mater. Processing Technol., 198, Iss. 1-3: 445 (2008). Crossref
  15. A. Nassar and E. Nassar, Heliyon, 6, Iss. 1, Art. number E03167 (2020). Crossref
  16. M. Bulut, Composites Part B: Engineering, 122: 71 (2017). Crossref