Structure Monitoring of the LaB$_6$–TiB$_2$ Composites

O. P. Karasevska$^{1,2}$, T. O. Soloviova$^{2}$, P. I. Loboda$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 01.06.2021; final version - 08.10.2021. Download: PDF

The structure and properties of bulk and powder LaB$_6$–TiB$_2$ composites as a promising material in solar energy converters have been studied by X-ray, metallographic, and pulsed excitation methods. The phase composition and defects of the composite’s structure have been determined. The effect of heating–cooling cycles (20–1400°C) on the structure’s characteristics of the composite’s matrix phase is shown. The compatibility of the structure’s analysis results by destructive (X-ray and metallographic) and non-destructive methods (pulsed excitation have been established). The capabilities of the pulsed excitation method for determining the composites structural characteristics and using it to control their quality under operating conditions are demonstrated.

Key words: bulk, powder, composite, solar energy, structure, defects, cracks.



PACS: 61.72.Dd, 61.72.Ff, 61.72.Hh, 62.20.mj,, 62.20.Qp

Citation: O. P. Karasevska, T. O. Soloviova, and P. I. Loboda, Structure Monitoring of the LaB$_6$–TiB$_2$ Composites, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1653—1665 (2021)

  1. K. A. Khan, S.A. Khan, L. Talwar, and Y. S. Chib, International Journal of Current Research, 10, Iss. 5: 69440 (2018).
  2. C. Oshima, M. Aono, T. Tanaka, S. Kawai, and R. Shimizu, J. Appl. Phys., 51: 1201 (1980). Crossref
  3. M. Futamoto, M. Nakazawa, and U. Kawabe, Surface Sci., 100, No. 3: 470 (1980). Crossref
  4. C. Zimmer, J. Schubert, S. Hamann, U. Kunze, and T. Doll, Phys. status solidi (a), 208, No. 6: 1241 (2011). Crossref
  5. L. Xiao, Y. Su, W. Qiu, Y. Liu, J. Ran, J. Wu, F. Lu, F. Shao, D. Tang, and P. Peng, Ceramics International, 42, No. 12: 14278 (2016). Crossref
  6. E. Sani, L. Mercatelli, M. Meucci, L. Zoli, and D. Sciti, Sci. Rep., 7: 718 (2017). Crossref
  7. E. Sani, M. Meucci, L. Mercatelli, A. Balbo, C. Musa, R. Licheri, R. Orrù, and G. Cao, Solar Energy Materials and Solar Cells, 169: 313 (2017). Crossref
  8. K. Hirano, J. Eur. Ceram. Soc., 25, No. 8: 1191 (2005). Crossref
  9. P. Loboda, Powder Metall. Met. Ceram., 39: 480 (2000). Crossref
  10. T. Soloviova, O. Karasevska, J. Vleugels, and P. Loboda, Ceramics International, 47, No. 12: 17667 (2021). Crossref
  11. M. Wilkens, Kristall und Technik, 11: 1159 (1976). Crossref
  12. P. F. Fewster, Newsletter, No. 24: 17 (2000).
  13. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin-Heidelberg: Springer: 1996). Crossref
  14. Y. Shan, H. Xu, Zh. Zhou, Z. Y., X. Xu, and Zh. Wu, J. Intelligent Material Systems and Structures, 30, No. 13: 1951 (2019). Crossref
  15. R. Gibson, Composites Sci. Technol., 60, No. 15: 2769 (2000). Crossref
  16. G. Roebben, B. Basu, J. Vleugels, and O. Van der Biest, J. European Ceramic Society, 23, No. 3: 481 (2003). Crossref
  17. A. Swarnakar, S. Giménez, S. Salehi, J. Vleugels, and O. Van der Biest, Recent Key Engineering Materials, 333: 235 (2007). Crossref
  18. A. Al-Adnani, F Mustapha, S. Sapuan, and M. Saifulnaz, J. Intelligent Material Systems and Structures, 27, No. 17: 1 (2016). Crossref
  19. T. Soloviova, O. Karasevska, and P. Loboda, Ceramics International, 45, No. 7: 8677 (2019). Crossref
  20. A. G. Evans and E. A. Charles, J. American Ceramic Society, 59: 371 (1976). Crossref
  21. V. Panin, Mater. Sci. Engineering: A, 319-321: 197 (2001). Crossref
  22. T. Soloviova, O. Karasevska, J. Vleugels, and P. Loboda, J. Alloys Compd., 729: 749 (2017). Crossref
  23. A. Seeger, Mat. Sci. Eng. A, 370, No. 1/2: 50 (2004). Crossref
  24. A Granato and K. Lucke, J. Appl. Phys., 27, No. 6: 583 (1956). Crossref
  25. C. Kittel, Introduction to Solid State Physics (Wiley: 2004).