Characteristics and Parameters of Overstressed Nanosecond Discharge Plasma Between Copper Electrodes in Argon

O. K. Shuaibov, A. O. Malinina, R. V. Hrytsak, O. M. Malinin, Yu. Yu. Bilak, Z. T. Gomoki, M. I. Vatrala

Uzhhorod National University, 3 Narodna Sqr., UA-88000 Uzhhorod, Ukraine

Received: 26.03.2021; final version - 15.09.2021. Download: PDF

The characteristics and parameters of the overvoltage bipolar discharge of nanosecond duration between copper electrodes in argon at a pressure of 6.7 kPa are given. In the process of microexplosions of inhomogeneities on the working surfaces of copper electrodes in a strong electric field in the gap between the electrodes are made of copper vapour. This creates the preconditions for the synthesis of thin nanostructured copper films, which can be deposited on a dielectric substrate (quartz, glass, ceramics) installed near the center of the discharge gap. The spatial characteristics of the discharge, voltage pulses on the discharge interval of $d$ = 2 and 7 mm, pulses of the discharge current, pulse power of the discharge and energy contribution to the discharge per pulse are studied. Plasma radiation spectra and oscillograms of radiation of the most intense spectral lines and bands are studied by the method of emission spectroscopy with high time separation, which allowed to establish the main excited products formed in plasma. The optimization of the time-averaged UV-radiation of the point emitter depending on the supply voltage of the high-voltage modulator and the repetition frequency of the discharge pulses is carried out. Using the method of numerical modeling of nanosecond discharge plasma parameters based on copper vapour in medium pressure argon by solving the Boltzmann kinetic equation for the electron energy distribution function (FREE), we calculated the mobility, temperature and density of electrons in plasma, and their rate constants depending on the value of the $E/N$ parameter for the plasma studied experimentally.

Key words: overvoltage nanosecond discharge, nanostructures, Copper, Argon, plasma characteristics, plasma parameters.



PACS: 51.50.+v, 52.80.Mg, 52.80.Tn, 52.90.+z, 79.60.Jv

Citation: O. K. Shuaibov, A. O. Malinina, R. V. Hrytsak, O. M. Malinin, Yu. Yu. Bilak, Z. T. Gomoki, and M. I. Vatrala, Characteristics and Parameters of Overstressed Nanosecond Discharge Plasma Between Copper Electrodes in Argon, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1683—1706 (2021) (in Ukrainian)

  1. A. K. Shuaibov, A. Y. Minya, A. A. Malinina, A. N. Malinin, V. V. Danilo, M. Yu. Sichka, and I. V. Shevera, American J. Mechanical Mater. Engineering, 2, No. 1: 8 (2018).
  2. Alexander Shuaibov, Alexander Minya, Antonina Malinina, Alexander Malinin, Roman Golomd, Igor Shevera, Zoltan Gomoki, and Vladislav Danilo, Advances in Natural Sciences: Nanoscience and Nanotechnology, 9: 035018 (2018). Crossref
  3. O. K. Shuaibov, A. Y. Minya, M. P. Chuchman, A. O. Malinina, O. M. Malinin, V. V. Danilo, and Z. T. Gomoki, Ukrainian Journal of Physics, 63, No. 9: 790 (2018) (in Ukrainian). Crossref
  4. G. A. Mesyats, Physics-Uspekhi, 38, No. 6: 567 (1995). Crossref
  5. A. K. Shuaibov, G. E. Laslov, and Y. Y. Kozak, Opt. Spectrosc., 116, No. 4: 552 (2014). Crossref
  6. A. K. Abduev, A. S. Asvarov, A. K. Akhmetov, R. M. Emirov, and V. V. Belyaev, Tech. Phys. Lett., 43, No. 22: 1016 (2017). Crossref
  7. V. G. Melnikov, Zashchita Metallov [Protection of Metals], 41, No. 2: 168 (2005) (in Russian).
  8. Kh. V. Allakhverdieva, Izv. Vyssh. Uchebn. Zaved. Khim. Tekhnol., 63, No. 10: 71 (2020) (in Russian). Crossref
  9. L. F. Abayeva, V. I. Shumsky, E. N. Petrickaya, D. A. Rogatkin, and P. N. Lyubchenko, Almanakh Klinicheskoy Meditsiny [Almanac of Clinical Medicine], No. 22: 10 (2010) (in Russian).
  10. V. F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (New York: Nova Science Publishers Inc.: 2014).
  11. A. R. Striganov and N. S. Sventitsky, Tablitsy Spektalnykh Liniy Neytralnykh i Ionizovannykh Atomov [Tables of Spectral Lines of Neutral and Ionized Atoms] (Moscow: Atomizdat: 1966) (in Russian).
  12. NIST Atomic Spectra Database Lines Form. Crossref
  13. R. Pierce and A. Haydon, Identifikatsiya Molekulyarnykh Spektrov [Identification of Molecular Spectra] (Moscow: Iz-vo IL: 1949) (in Russian).
  14. Dmitry Levko and Laxminarayan L. Raja, Physics of Plasmas, 22: 123518 (2016). Crossref
  15. A. N. Gomonai, Zhurnal Prikladnoy Spektroskopii [Journal of Applied Spectroscopy], 82, No. 1: 17 (2018) (in Russian).
  16. V. M. Nemec and T. G. Abdulin, Vestnik SPbGU, 4, No. 1: 166 (2014) (in Russian).
  17. D. V. Beloplotov, V. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Fizicheskiy Zhurnal. Seriya Konferentsiy [Journal of Physics. Conference Series], 652: 012012 (2015) (in Russian). Crossref
  18. M. Lomaev, D. Beloplotov, D. Sorokin, and V. Tarasenko, 32nd ICPIC (July 26-31, 2015) (Romania, Jasi: 2015).
  19. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol., 14: 722 (2005). Crossref
  20. BOLSIG+ Software. Crossref
  21. Yu. P. Raiser, Fizika Gazovogo Razryada [Physics of Gas Discharge] (Moscow: Nauka: 1987) (in Russian).