Emission Properties of Cathode Materials Based on LaNi$_5$–CNT Composites

I. M. Sydorchenko$^{1}$, N. A. Shevchenko$^{1}$, Ye. A. Tsapko$^{1}$, I. Ye. Galstan$^{1}$, H. Yu. Mykhaylova$^{1}$, E. G. Len$^{1,2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 23.08.2021; final version - 11.10.2021. Download: PDF

The emission of electrons under the action of laser and/or concentrated solar radiation from cathode materials based on carbon nanotubes (CNTs), LaNi$_5$, CNT+LaNi$_5$, CNT+LaNi$_5$+Cs, CNT forest on a Ni substrate, as well as the effect of aging processes on the emission properties of the corresponding samples is investigated. As found, for a cathode made of carbon nanotubes, when an anode from Mo is used, the emission current at a temperature of about 240°C increases by an order of magnitude in comparison with a cathode from LaNi$_5$ and reaches 13 mA; The maximum emission current from the cathode with LaNi$_5$ rises rapidly at temperatures above 450°C when an additional voltage is applied, and at its value of 90 V the current reaches 9 mA. As found, the addition of the LaNi$_5$ intermetallic compound to CNTs increases the emission threshold for the composite by almost 10 times, and the maximum emission current density doubles (from 3 to 6 A/cm$^{2}$). Such an increase in emission characteristics is caused by an increase in the concentration of electrons due to their transfer to nanotubes from metal particles, which indicates a significantly higher electrical conductivity of the LaNi$_5$+CNT composite when the CNT content is <30 wt. %. Highest values of the emission current density (13.6 A/cm$^{2}$) are observed for the CNT+LaNi$_5$+Cs sample at a relatively low laser pulse energy (0.1 J). This material also showed the best results in experiment with the sun. The study of aging processes revealed a significant deterioration in the emission characteristics of all samples, except for the CNT+LaNi$_5$+Cs nanocomposite and CNT on a Ni substrate. The slow time change of the of CNT+LaNi$_5$+Cs emission properties is caused by the diffusion of Cs from the bulk of the sample onto its surface and the reduction of LaNi$_5$ oxide. The emission properties of the CNT forest on the Ni substrate under the action of laser irradiation are enhanced—the direct emission current increase by about a factor of 4 due to the improvement with time in the adhesion between the CNTs and the substrate.

Key words: thermionic converters, concentrated solar radiation, laser-assisted emission, composite metal–carbon nanotubes, aging.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i12/1707.html

DOI: https://doi.org/10.15407/mfint.43.12.1707

PACS: 68.37.Hk, 78.45.+h, 79.60.Jv, 79.70.+q, 81.05.U-, 85.30.Tv

Citation: I. M. Sydorchenko, N. A. Shevchenko, Ye. A. Tsapko, I. Ye. Galstan, H. Yu. Mykhaylova, and E. G. Len, Emission Properties of Cathode Materials Based on LaNi$_5$–CNT Composites, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1707—1718 (2021) (in Ukrainian)

  1. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science, 352: aad4424 (2016). Crossref
  2. Zh. I. Alferov, V. M. Andreev, V. D. Rumiantsev, Fyzyka i Tekhnyka Poluprovodnykov, 38, No. 8: 937 (2004) (in Russian). Crossref
  3. N. D. Morhulis, UFN, 70, No. 4: 679 (1960) (in Russian). Crossref
  4. A. V. Eletskyi, UFN, 172, No. 4: 401 (2002) (in Russian). Crossref
  5. Yu. V. Gulyaev, L. A. Chernozatonskii, and Z. Ya. Kosakovskaya, Revue 'Le Vide, les Couches Minces', Suppliment, No. 271: 322 (1994).
  6. V. B. Eliseev, A. P. Piatnitskyi, D. Y. Sergeev, Termoemissionnye Preobrazovateli Energii (Moscow: Atomizdat: 1970) (in Russian).
  7. M. M. Nyshchenko, H. Yu. Mykhailova, B. V. Kovalchuk, Naukoyemni Tekhnolohii, 3 (11-12): 93 (2011) (in Russian).
  8. E. T. Kucherenko, Spravochnik po Fizicheskim Osnovam Vakuumnoy Tekhniki (Kyev: Vyshcha Shkola: 1981) (in Russian).
  9. V. L. Granovskyi, Elektricheskyi Tok v Gaze (Moscow: Gostekhteorizdat: 1952) (in Russian).
  10. M. M. Nischenko, N. A. Shevchenko, D. V. Schur, V. A. Bogolepov, A. G. Dubovoi, and I. M. Sidorchenko, Inorganic Materials: Applied Research, 1, No. 4: 276 (2010). Crossref
  11. H. Yu. Mykhaylova, E. G. Len, I. Ye. Galstyan, E. A. Tsapko, O. Yu. Gerasymov, V. I. Patoka, I. M. Sidorchenko, and M. M. Yakymchuk, Metallofiz. Noveishie Tekhnol., 42, No. 4: 575 (2020). Crossref
  12. I. Ye. Galstian, E. G. Len, E. A. Tsapko, H. Yu. Mykhaylova, V. Yu. Koda, M. O. Rud, M. Ya. Shevchenko, V. I. Patoka, M. M. Yakymchuk, and G. O. Frolov, Metallofiz. Noveishie Tekhnol., 42, No. 4: 451 (2020). Crossref