Diffusion Model of Austenite Decomposition with Considering Its Stabilizationin in Alloyed Steel

S. Bobyr, E. Parusov, T. Golubenko, I. Chuiko

Z. I. Nekrasov Iron and Steel Institute, NAS of Ukraine, 1 Academician Starodubov Sqr., UA-49050 Dnipro, Ukraine

Received: 05.11.2021. Download: PDF

The diffusion model of the austenite transformation in hypoeutectoid alloyed steel during isothermal holding is received further development. The model which is developed provides ability to determine the volume fraction of the structural components, the quantity of which are depends on the magnitude of the steel overcooling. The model is considers the degree of the overcooling of austenite, the contents of carbon and structural components in the steel, the size of the nucleus, the volume fraction of the phases, the quantity of the carbon, which are running through a unit area over a period of time, the balance of thermal energy, etc. As shown, in the hypoeutectoid alloyed steel there are two maximum of the austenite stability in the temperature ranges of the existence of upper and lower bainite. The amount of retained austenite is minimal between these temperature diapasons. As established, the residual austenite, depending on the value of the steel overcooling and the temperature range of the holding during subsequent cooling, can decompose by diffusion or shear mechanisms.

Key words: $\gamma \rightarrow \alpha$-transformation, pearlite, bainite, residual austenite, hypoeutectoid alloyed steel.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i01/0031.html

DOI: https://doi.org/10.15407/mfint.44.01.0031

PACS: 05.70.Ln, 64.60.Bd, 64.70.kd, 64.75.Op, 66.30.Fq, 81.10.Jt, 81.30.Kf

Citation: S. Bobyr, E. Parusov, T. Golubenko, and I. Chuiko, Diffusion Model of Austenite Decomposition with Considering Its Stabilizationin in Alloyed Steel, Metallofiz. Noveishie Tekhnol., 44, No. 1: 31—45 (2022) (in Ukrainian)


REFERENCES
  1. C. Zener, Trans. AIME, 167: 550 (1946).
  2. V. I. Bol'shakov and S. V. Bobyr', Metal Sci. Heat Treatment, 46: 329 (2004). Crossref
  3. J. G. Speer, D. V. Edmonds, F. C. Rizzo, and D. K. Matlock, Solid State Mater. Sci., 8, Nos. 3-4: 219 (2004). Crossref
  4. J. G. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, Acta Mater., 51, No. 9: 2611 (2003). Crossref
  5. V. M. Schastlivtsev, Yu. V. Kaletina, E. A. Fokina, and A. Yu. Kaletin, Phys. Met. Metallogr., 115: 990 (2014). Crossref
  6. A. I. Ziza, M. S. Mikhailov, V. V. Tsukanov, D. I. Nikolaev, and T. A. Lychagina, Lett. Mater., 8 (2): 146 (2018). Crossref
  7. Hotz Hendrik, Kirsch Benjamin, and C. Jan Aurich, J. Intelligent Manufacturing, 32: 877 (2021). Crossref
  8. X. Zhang, T. Hickel, J. Rogal, S. Fähler, R. Drautz, and J. Neugebauer, Acta Mater., 99: 281 (2015). Crossref
  9. V. V. Kaverynsky, A. I. Trotsan, and Z. P. Sukhenko, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1051 (2017) (in Russian). Crossref
  10. F. Roters, T. Hickel, J. Neugebauer, M. Friak, C. Tasan, M. Diehl, and D. Raabe, Modeling of Materials: Development with Simulation-Discoveries through Simulation. Multiscale Materials Simulation (Winter School) (Germany, Aachen: German Research Foundation SPP: 2017).
  11. S. V. Bobyr and V. I. Bolshakov, Prog. Phys. Met., 15: 123 (2014) (in Russian). Crossref
  12. V. I. Bolshakov and S. V. Bobyr, Visnyk Prydniprovskoyi Akademiyi Budivnytstva ta Arhitektury, Nos. 7-8: 22 (2015) (in Russian).
  13. A. A.Popov and L. Ye. Popova, Spravochnik Termista. Izotermicheskie i Termokineticheskie Diagrammy Raspada Pereokhlazhdyonnogo Austenita [Thermist's Handbook. Isothermal and Thermokinetic Diagrams of the Decomposition of Supercooled Austenite] (Moscow-Sverdlovsk: Mashinostroitelnaya Literatura: 1961) (in Russian).
  14. Y. F. Ivanov and É. V. Kozlov, Russ. Phys. J., 36: 132 (1993). Crossref
  15. A. N. Leshchenko and A. P. Vishnyakov, Metallurgicheskaya i Gornorudnaya Promyshlennost [Metallurgical and Mining Industry], No 1: 49 (2000) (in Russian).
  16. A. G. Tsypkin, Spravochnik po Matematike. Dlya Srednikh Uchebnykh Zavedeniy [Handbook of Mathematics. For secondary schools] (Moscow: Nauka: 1988) (in Russian).
  17. E. V. Parusov, V. A. Lutsenko, I. N. Chuiko, and O. V. Parusov, Chernye Metally, No. 9: 39 (2020).
  18. V. V. Parusov, E. V. Parusov, L. V. Sagura, A. I. Sivak, A. P. Klimenko, and A. B. Sychkov, Metallurgical and Mining Industry, 3. No. 3: 114 (2011).
  19. N. Yu. Filonenko, O. I. Babachenko, and G. A. Kononenko, Mater. Sci., 55, No. 3: 440 (2019). Crossref
  20. N. Y. Filonenko, O. I. Babachenko, G. A. Kononenko, and K. G. Domina, Phys. Chem. Solid State, 21, No. 3: 525 (2020). Crossref
  21. A. B. Sychkov, E. V. Parusov, A. N. Zavalishin, and A. V. Kozlov, J. Chem. Technol. Metall., 53, Iss. 5: 977 (2018).
  22. J. W. Christian, The Theory of Transformations in Metals and Alloys. Materialstoday, 6, Iss. 3: 53 (2003). Crossref
  23. L. M. Lobanov, V. A. Kostin, O. V. Makhnenko, V. V. Zukov, and E. S. Kostenevich, Problems Atomic Sci. Technol., 2 (126): 89 (2020). Crossref
  24. O. Prokof'iev, R. Gubatyuk, S. Rymar, V. Sydorets, and V. Kostin, Solid State Phenom., 313: 72 (2021). Crossref
  25. S. V. Akhonin, V. Yu. Belous, R. V. Selin, and V. A. Kostin, IOP Conf. Series: Earth and Environmental Science, 688, Nos. 1-9: 012012 (2021). Crossref
  26. V. A. Kostin, G. M. Grigorenko, V. D. Poznyakov, and T. O. Zuber, Mater. Sci., 55, Iss. 6: 863 (2020). Crossref
  27. V. A. Kostin, G. M. Grigorenko, V. A. Shapovalov, and A. N. Pikulin, Welding Technology Review, 91(7): 45 (2019). Crossref
  28. A. I. Babachenko, D. N. Togobitskaya, A. A. Kononenko, I. R. Snigura, and O. V. Kuksa, Steel in Translation, 50, No. 11: 815 (2020). Crossref