Combination of Laser Shock Peening with Cavitation, Shot, and Ultrasonic Impact Hardening for Stainless Steels Surface Characteristics Improving

D. A. Lesyk$^{1}$, H. Soyama$^{2}$, B. N. Mordyuk$^{3,1}$, O. Stamann$^{4}$, V. V. Dzhemelinskyi$^{1}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, JP-980-8579 Sendai, Japan
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{4}$Otto von Guericke University, 2 Universitätsplatz, DE-39106 Magdeburg, Germany

Received: 22.10.2021. Download: PDF

This paper's aims are to compare the effects of advanced mechanical surface treatments on the surface characteristics of AISI 304 austenitic stainless steel. The laser shock peening (LSP), combined with the water jet cavitation peening (WjCP), water jet shot peening (WjSP), and multi-pin ultrasonic impact peening (UIP), is applied to improve the surface quality and increase the hardness, hardening depth, and the compressive residual stress values in the near-surface layers. The laser shock processing is implemented using a submerged laser peening system with a wavelength of 1064 nm. The outcomes of the LSP treatment combined with other peening techniques in different sequences (applied prior or post it) are studied. The experimental results show as compared to the combined LSP + WjCP and LSP + WjSP techniques, the combined LSP + UIP technique results in a lower surface roughness ($Ra \sim$ 0.15 $\mu$m) and higher surface macrohardness ($\sim$ 39.0 HRC$_5$) supported by nanoscale grain structure with grain size of 15–100 nm, which is observed by XRD and TEM analysis. The surface macrohardness is respectively increased by about 48%, 68%, and 80% after the combined WjCP + LSP, WjSP + LSP, and UIP + LSP techniques in comparison with the original sample (22.1 HRC$_5$). All combined peening techniques lead to an increase in the residual stresses values as compared to the single LSP process, providing the hardening depth of about 1 mm.

Key words: AISI 304 stainless steel, laser shock peening, water jet cavitation/shot peening, ultrasonic impact peening, roughness, hardness, nanostructure.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i01/0079.html

DOI: https://doi.org/10.15407/mfint.44.01.0079

PACS: 43.35.+d, 61.46.-w, 68.35.Ct, 68.35.Gy, 81.40.Lm, 81.65.-b

Citation: D. A. Lesyk, H. Soyama, B. N. Mordyuk, O. Stamann, and V. V. Dzhemelinskyi, Combination of Laser Shock Peening with Cavitation, Shot, and Ultrasonic Impact Hardening for Stainless Steels Surface Characteristics Improving, Metallofiz. Noveishie Tekhnol., 44, No. 1: 79—95 (2022)


REFERENCES
  1. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A, 505: 157 (2009). Crossref
  2. J. Radziejewska, Mater. Des., 32: 5073 (2011). Crossref
  3. D. A. Lesyk, S. Martinez, V. V. Dzhemelinskyy, A. Lamikiz, B. N. Mordyuk, and G. I. Prokopenko, Surf. Coat. Technol., 278: 108 (2015). Crossref
  4. R. Sundar, P. Ganesh, R. K. Gupta, G. Ragvendra, B. K. Pant, V. Kain, K. Ranganathan, R. Kaul, and K. S. Bindra, Lasers Manuf. Mater. Process., 6: 424 (2019). Crossref
  5. L. Petan, J. Grum, J. A. Porro, J. L. Ocana, and R. Sturm, Metals, 9: 1271 (2019). Crossref
  6. S. Martinez, A. Lamikiz, E. Ukar, I. Tabernero, and I. Arrizubieta, Appl. Therm. Eng., 98: 49 (2016). Crossref
  7. M. A. Montealegre, G. Castro, P. Rey, J. L. Arias, P. Vazquez, and M. Gonzalez, Contemp. Mater., 19: 19 (2010). Crossref
  8. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, and G. I. Prokopenko, Opt. Laser Technol., 111: 424 (2019). Crossref
  9. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, G. I. Prokopenko, Yu. V. Milman, and K. E. Grinkevych, Surf. Coat. Technol., 328: 344 (2017). Crossref
  10. Y. He, K. Li, I. S. Cho, C. S. Lee, I. G. Park, J.-i. Song, C.-W. Yang, J.-H. Lee, and K. Shin, Appl. Microsc., 45: 155 (2015). Crossref
  11. M. Chaib, M. Belhamiani, A. Megueni, A. Ziadi, and F. J. Belzunce, Int. J. Mater. Process. Techol., 53: 298 (2016). Crossref
  12. X. Wei, D. Zhu, X. Ling, L. Yu, and M. Dai, Int. J. Electrochem. Sci., 13: 4198 (2018). Crossref
  13. A. Azhari, C. Schindler, E. Kerscher, and P. Grad, Int. J. Adv. Manuf. Technol., 63: 1035 (2012). Crossref
  14. H. Soyama, Int. J. Peen. Sci. Technol., 1: 3 (2017).
  15. B. N. Mordyuk, Yu. V. Milman, M. O. Iefimov, G. I. Prokopenko, V. V. Silberschmidt, M. I. Danylenko, and A. V. Kotko, Surf. Coat. Technol., 202: 4875 (2008). Crossref
  16. L. Li, M. Kim, S. Lee, M. Bae, and D. Lee, Surf. Coat. Technol., 307: 517 (2016). Crossref
  17. X. Yang, X. Wang, X. Ling, and D. Wang, Results. Phys., 7: 1412 (2017). Crossref
  18. M. Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y. S. Pyoun, and R. Murakami, Surf. Coat. Technol., 218: 93 (2013). Crossref
  19. A. Gill, A. Telang, S. R. Mannava, D. Qian, Y. S. Pyoun, H. Soyama, and V. K. Vasudevan, Mater. Sci. Eng. A, 576: 346 (2013). Crossref
  20. M. Turski, S. Clitheroe, A. D. Evans, C. Rodopoulos, D. J. Hughes, and P. J. Withers, Appl. Phys. A, 99: 549 (2010). Crossref
  21. J. Epp and H. W. Zoch, J. Heat Treat. Mater., 71: 109 (2016). Crossref
  22. D. A. Lesyk, H. Soyama, B. N. Mordyuk, V. V. Dzhemelinskyi, S. Martinez, N. I. Khripta, and A. Lamikiz, J. Mater. Eng. Perform., 28: 5307 (2019). Crossref
  23. D. A. Lesyk, B. N. Mordyuk, V. V. Dzhemelinskyi, G. I. Prokopenko, and O. O. Danyleiko, Sci. Rev., 2: 3 (2018).
  24. P. Tadge, P. K. Gupta, and C. Sasikumar, Mater. Today: Proc., 2: 3245 (2015). Crossref
  25. M. O. Vasylyev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, A. P. Burmak, and N. V. Franchik, Metallofiz. Noveishie Tekhnol., 39, No. 7: 905 (2017) (in Ukrainian). Crossref
  26. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Coat. Technol., 343: 57 (2018). Crossref
  27. O. Takakuwa, K. Yamamiya, and H. Soyama, J. Solid Mechanics Mater. Eng., 7: 357 (2013). Crossref
  28. Q. Feng, J. She, X. Wu, C. Wang, and C. Jiang, J. Mater. Eng. Perform., 27: 1396 (2018). Crossref
  29. D. Kumar, S. Idapalapati, W. Wang, and S. Narasimalu, Mater., 12: 2503 (2019). Crossref
  30. O. Unal and R. Varol, Appl. Surf. Sci., 351: 289 (2015). Crossref
  31. Z. Wang, C. Jiang, X. Gan, Y. Chen, and V. Ji, Int. J. Fatigue, 33: 549 (2011). Crossref
  32. Y. Zhang, S. Qu, F. Lu, F. Lai, V. Ji, H. Liu, and X. Li, Int. J. Fatigue, 141: 105867 (2020). Crossref
  33. D. A. Lesyk, B. N. Mordyuk, S. Martinez, M. O. Iefimov, V. V. Dzhemelinskyi, and A. Lamikiz, Surf. Coat. Technol., 401: 126275 (2020). Crossref
  34. L. Shen, L. Wang, Y. Wang, and C. Wang, Surf. Coat. Technol., 214: 3222 (2010). Crossref
  35. M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, and G. Proust, Surf. Coat. Technol., 221: 191 (2013). Crossref
  36. A. Toppo, R. Kaul, M. G. Pujar, U. K. Mudali, and L. M. Kukreja, J. Mater. Eng. Perform., 22: 632 (2013). Crossref
  37. N. Tsuji, S. Tanaka, and T. Takasugi, Surf. Coat. Technol., 203: 1400 (2009). Crossref
  38. N. Tsuji, S. Tanaka, and T. Takasugi, Mater. Sci. Eng. A, 499: 482 (2008). Crossref
  39. B. Wu, P. Wang, Y.-S. Pyoun, J. Zhang, and R.-I. Murakami, Surf. Coat. Technol., 213: 271 (2012). Crossref
  40. S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla, and V. K. Vasudevan, Appl. Surf. Sci., 428: 17 (2018). Crossref
  41. B. Starman, H. Hallberg, M. Wallin, M. Ristinmaa, and M. Halilovic, Int. J. Mech. Sci., 176: 105535 (2020). Crossref
  42. H. Soyama, J. Mater. Proc. Technol., 269: 65 (2019). Crossref
  43. H. Soyama, Metals, 10: 63 (2019). Crossref
  44. H. Soyama, C. R. Chighizola, and M. R. Hill, J. Mater. Process. Tech., 288: 116877 (2020). Crossref
  45. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref