‘Plateau’ on Temperature Dependence of the Critical Shear Stress in Binary and Multicomponent Solid Solutions and in Pure Metals

S. O. Firstov, T. G. Rogul

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 30.08.2021; final version - 22.10.2021. Download: PDF

One of the most interesting results obtained in the study of mechanical properties of binary and multicomponent solid solutions (high-entropy alloys, HEAs) is the presence of long athermic hardening, which causes the appearance of a characteristic ‘plateau’ on the curve of temperature dependence of critical shear stress $\tau_{\textrm{cr}}$($T$) (or yield strength $\sigma_{0.2}$($T$)) at temperatures above 0.2–0.35$T_{\textrm{m}}$. From the point of view of creation of the new materials, that are able to withstand mechanical loads at high temperatures, determining mechanisms for the appearance of such a ‘plateau’ is extremely actual. In the presented work the existing representation about the features of the temperature dependence of the critical shear stress in binary and multicomponent solid solutions are considered in comparison with pure metals. A new approach for determining the nature of athermal ‘plateaus’ on the curves of temperature dependences of the critical shear stress $\tau_{\textrm{cr}}$($T$) is proposed. As shown, the existence of a ‘plateau’ in the $\tau_{\textrm{cr}}$($T$) dependence in solid solutions and in pure metals at the indicated temperatures is, in fact, anomalous, since with an increase in temperature there is a noticeable decrease in their Young’s modulus, which, respectively, should also lead to a decrease in the critical shear stress $\tau_{\textrm{cr}}$. The authors’ analysis indicates that the factor that compensates for the expected decrease in $\tau_{\textrm{cr}}$ associated with a decrease in the elastic modulus in pure metals is an increase in the mean square displacements of atoms from ideal positions in the crystal lattice as a result of a linear increase in dynamic distortions of the crystal lattice with increasing temperature. In multicomponent solid solutions, in addition to an increase in the mean square displacements of atoms, the dependence $\tau_{\textrm{cr}}$($T$) in the temperature range where a ‘plateau’ is observed, effects similar to dynamic deformation aging, which are accompanied by unequal mobility of atoms of different elements, can also affect. The results obtained can be used to select the elemental composition of multicomponent heat-resistant alloys, which will be competitive in comparison with the known traditional alloys.

Key words: temperature dependence of critical shear stress, binary and multicomponent solid solutions, Young’s modulus, athermic hardening.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i01/0127.html

DOI: https://doi.org/10.15407/mfint.44.01.0127

PACS: 62.20.D-, 62.20.fg, 81.05.Bx, 81.40.Lm, 81.40.Np

Citation: S. O. Firstov and T. G. Rogul, ‘Plateau’ on Temperature Dependence of the Critical Shear Stress in Binary and Multicomponent Solid Solutions and in Pure Metals, Metallofiz. Noveishie Tekhnol., 44, No. 1: 127—140 (2022) (in Ukrainian)


REFERENCES
  1. S. A. Firstov, V. F. Gorban', N. A. Krapivka, E. P. Pechkovskij, N. I. Danilenko, and M. V. Karpec, Vestnik SamGTU. Seriya Fiziko-Matematicheskie Nauki (2009) (in Russian).
  2. Praveen Sathiyamoorthi and Kim Hyoung Seop, Adv. Eng. Mater., 1: 1700645 (2017). Crossref
  3. H. Zhang, Y. Zhao, S. Huang, S. Zhu, W. Fu, and D. Li, Materials, 12, No. 2: 720 (2019). Crossref
  4. Y. Chen, Y. Li, X. Cheng, C. Wu, B. Cheng, and Z. Xu, Materials, 11, No. 2: 208 (2018). Crossref
  5. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Intermetallics, 18: 1758 (2010). Crossref
  6. D. B. Miracle and O. N. Senkov, Acta Mater., 122: 448 (2017). Crossref
  7. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mat., 6: 299 (2004). Crossref
  8. J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Mater. Sci. Forum, 560: 1 (2007). Crossref
  9. M.-H. Tsai, Entropy, 15: 5338 (2013). Crossref
  10. S. A. Firstov, V. F. Gorban, N. A. Krapivka, E. P. Pechkovskij, N. I. Danilenko, and M. V. Karpets', Vestnik SamGTU. Seriya Fiziko-Matematicheskie Nauki, 19 (2009). (in Russian).
  11. M. V. Karpets', O. M. Mislivchenko, O. S. Makarenko, N. A. Krapivka, V. F. Gorban, and S. Yu. Makarenko, Metallofiz. Noveishie Tekhnol., 36, No. 6: 829 (2014) (in Russian).
  12. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics, 19, Iss. 5: 698 (2011). Crossref
  13. Yu. V. Milman and V. I. Trefilov, Mehanizm Razrusheniya Metallov (Kiev: Naukova Dumka: 1966), p. 59 (in Russian).
  14. V. I. Trefilov, Yu. V. Milman, and S. A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov (Kyiv: Naukova Dumka: 1975) (in Russian).
  15. H. Konrad, Struktura i Mehanicheskie Svoystva Metallov (Moccow: Metallurgiya: 1967), p. 225 (in Russian).
  16. R. L Fleischer, The Strengthening of Metals (Ed. D. Peckner) (New York: Reinhold Publishing Corp.: 1964).
  17. S. A. Firstov and T. G. Rogul', Metallofiz. Noveishie Tekhnol., 39, No. 1: 33 (2017) (in Russian). Crossref
  18. S. A. Firstov and Metallofiz. Noveishie Tekhnol., 40, No. 2: 219 (2018) (in Russian).
  19. S. A. Firstov and G. F. Sarzhan, Sbornik Nauchnykh Trudov 'Elektronnaya Mikroskopiya i Prochnost' Materialov', 20: 71 (2014) (in Russian).
  20. P. Haazen, Fizicheskoe Metallovedenie (Eds. R. U. Kan and P. Haazen) (Moscow: Metallurgiya: 1987), vol. 3, p. 187 (in Russian).
  21. Z. Guo, N. Saunders, J. P. Schillé, and A. P. Miodownik, MRS International Materials Research Conference (June 20, 2008, Chongqing, China), p. 9.
  22. J. R. Stephens and W. R. Witzke, NASA Scientific and Technical Publication (Washington, D.C.: Lewis Research Center National Aeronautics and Space Administration: 1976).
  23. N. F. Mott and F. R. N. Nabarro, Rep. Conf. on Strength of Solids (London: 1948), p. 1.
  24. Zh. Fridel', Dislokatsii (Moscow: Mir: 1967) (in Russian).
  25. R. Labusch, phys. status solidi, 41: 659 (1970). Crossref
  26. H. Suzuki, Strength of Metals and Alloys (Ed. H. J. McQueen) (Toronto: Pergamon: 1986).
  27. S. A. Firstov, T. G. Rogul', N. A. Krapivka, S. S. Ponomar'ov, V. V. Kovilyav, and M. V. Karpets', Deformatsiya i Razrushenie Materialov, 2: 9 (2013) (in Russian).
  28. A. A. Rusakov, Rentgenografiya Metallov (Moscow: Atomizdat: 1977) (in Russian).
  29. Norihiko L. Okamoto and Katsushi Tanaka, AIP Advances, 6, No.12: 125008-1 (2016). Crossref
  30. O. V. Sobol', V. F. Gorban', M. O. Krapivka, T. G. Rogul', and S. O. Firstov, Poroshkovaya Metalurgiya, 11/12: 127 (2020) (in Russian)
  31. O. B. Perevalova, A. V. Panin, and E. O. Tyurin, Fazovye Perekhody, Uporyadochennye Sostoyaniya i Novye Materialy, 28 (2013) (in Russian).
  32. S. A. Firstov, V. F. Gorban', N. A. Krapivka, E. P. Pechkovskij, and A. V. Samelyuk, Deformatsiya i Razrushenie Materialov i Nanomaterialov (Moscow: IMET RAN: 2011) (in Russian).
  33. S. A. Firstov, V. F. Gorban', N. A. Krapivka, E. P. Pechkovskij, and A. L. Eremenko, Kompozity i Nanomaterialy, 3(6): 125 (2014) (in Russian).
  34. O. Boser, Metall. Mater. Trans. B, 3: 843 (1972). Crossref
  35. T. E. Mitchell, Progr. Appl. Mater. Res., 6: 117 (1964).
  36. P. Haasen, Z. Metallk., 55: 55 (1964). Crossref
  37. R. A. Varin, K. Kurzydlowski, and K. Tangri, Mater. Sci. Eng., 80: L5 (1986). Crossref
  38. D. Zakarian, A. Khachatrian, and S. Firstov, Metal Powder Rep., 74: 204 (2019). Crossref
  39. B. M. Drapkin, Izv. AN SSSR. Metally, 3: 193 (1980) (in Russian).
  40. V. S. Zolotorevskij, Mekhanicheskie Svojstva Metallov: Uchebnik dlya Vuzov (Moscow: Metallurgiya: 1983) (in Russian).
  41. R. Carroll, C. Lee, C.-W. Tsai, J.-W. Yeh, J. Antonaglia, B. A. W. Brinkman, M. LeBlanc, X. Xie, S. Chen, P. K. Liaw, and K. A. Dahmen, Sci. Rep., 5: 16997 (2015). Crossref
  42. B. Wang, X. Huang, A. Fu, Y. Liu, and B. Liu, Mater. Sci. Eng. A, 726: 37 (2018). Crossref
  43. I. Nikulin, R. Kaibyshev, and V. Skorobogatykh, J. Phys.: Conf. Ser., 240: 012071 (2010). Crossref