Effect of Atomic Substitutions on the Electronic Structure of Pt$_{1-x}$Ni$_{x}$MnSb Alloys ($x$ = 0.0–1.0)

V. M. Uvarov, M. V. Uvarov

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 08.12.2021. Download: PDF

Using zone calculations in the FLAPW (the full-potential linearized augmented-plane-waves) model, information on the energy, charge and spin characteristics of Pt$_{1-x}$Ni$_{x}$MnSb alloys ($x$ = 0.0–1.0) is obtained. As established, with an increase in the concentration of nickel atoms in Pt$_{1-x}$Ni$_{x}$MnSb alloys, the interatomic space density of electrons decreases, covalent bonds weaken, and the cohesive energies of the alloys decrease. The dominant contributions to the formation of magnetic moments in Pt$_{1-x}$Ni$_{x}$MnSb alloys are provided by 3d electrons of manganese atoms. In alloys with $x \geq$ 0.50, a complete polarization of Fermi electrons is registered that converts these alloys to a half-metallic state.

Key words: band-structure calculations, Heusler alloys, band structure, magnetic mo-ments, polarized band-structure state, spintronics.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i04/0431.html

DOI: https://doi.org/10.15407/mfint.44.04.0431

PACS: 62.20.-x, 63.20.dk, 71.15.-m, 71.15.Mb, 71.20.Nr, 71.27.+a

Citation: V. M. Uvarov and M. V. Uvarov, Effect of Atomic Substitutions on the Electronic Structure of Pt$_{1-x}$Ni$_{x}$MnSb Alloys ($x$ = 0.0–1.0), Metallofiz. Noveishie Tekhnol., 44, No. 4: 431—441 (2022)


REFERENCES
  1. G. E. Bacon and J. S. Plant, J. Phys. F: Metal. Phys., 1, No. 4: 524 (1971). Crossref
  2. T. Graf, C. Felser, and Stuart S. P. Parkin, Progress in Solid State Chemistry, No. 39: 1 (2011). Crossref
  3. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, arXiv:cond-mat/0203534v3 19 Jul 2002, p. 1.
  4. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed., No. 46: 668 (2007). Crossref
  5. I. Galanakis and P. H. Dederichs, Lect. Notes Phys., 676: 1 (2005). Crossref
  6. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, No. 25: 2024 (1983). Crossref
  7. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, arXiv:cond-mat/0510276v1 [cond-mat.mtrl-sci] 11 Oct 2005, p. 1.
  8. I. Galanakis and Ph. Mavropoulos, J. Phys.: Condens. Matter, 19, No. 31: 315213 (2007). Crossref
  9. P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, Appl. Phys. Lett., 42: 202 (1983). Crossref
  10. P. P. J. van Engelen, D. D. de Mooij, J. H. Wijngaard, and K. H. J. Buschow, J. Magn. Magn. Mater., 130: 247 (1994). https://doi.org/10.1016/0304-8853(94)90680-7
  11. H. Masumoto and K. Watanabe, Trans. JIM, 17: 588 (1976). Crossref
  12. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, and J. Wijngaard, J. Phys.: Condens. Matter, 1: 2341 (1989). Crossref
  13. V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Metallofiz. Noveishie Tekhnol., 38, No. 3: 305 (2016). Crossref
  14. V. N. Uvarov, N. V. Uvarov, S. A. Bespalov, and M. V. Nemoshkalenko, Ukr. J. Phys., 62, No. 2: 106 (2017). Crossref
  15. D. Singh, Plane Waves, Psedopotentials and LAPW Method (Boston: Kluwer Academic: 1994). Crossref
  16. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  17. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, and Laurence D. Marks, WIEN2k, An Augmented Plane Wave  Local Orbitals Program for Calculating Crystal Properties (Austria, Wien: Techn. Universität: 2001).
  18. http://www.wien2k.at/reg_user/faq/
  19. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter, 15: 7307 (2003). Crossref
  20. V. N. Uvarov and N. V. Uvarov, Metallofiz. Noveishie Tekhnol., 39, No. 3: 309 (2017) (in Russian). Crossref
  21. J. Murrel, S. Kettle, and J. Tedder, Teoriya Valentnosti (Moscow: Mir: 1968) (in Russian).
  22. B. L. Aleksandrov and M. B. Rodchenko, Patent RF RU2273058C1 (Published 27.03.2006, Bull. 9) (in Russian).