Velocity and Absorption of Longitudinal Ultrasound in an Extruded Mg–5% Sc Alloy

O. S. Bulatov, V. S. Klochko, A. V. Korniyets, V. I. Spitsyna, I. I. Papirov, A. I. Pikalov, A. V. Shokurov

National Science Center ‘Kharkiv Institute of Physics and Technology’, NAS of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine

Received: 02.10.2021; final version - 18.01.2022. Download: PDF

The behaviour of the velocity and the change in the absorption of longitudinal ultrasound in the process of structural relaxation is investigated at a frequency of 50 MHz using ultrasonic spectroscopy in the temperature range 77–300 K in the Mg–5% Sc alloy deformed by equal-channel angular extrusion. Peaks of acoustic absorption with localization temperatures of $\sim$232 and 190 K are found. An estimate of the activation energy ($\sim$0.5 and $\sim$0.16 eV) indicates that these relaxation processes are due to dislocation relaxation resonance. The influence of the kinetics of the processes of structural relaxation in the extruded alloy on the investigated acoustic characteristics is shown. As found, that the evolution of the temperature spectrum of acoustic absorption in the Mg–5% Sc alloy is caused by the return of the structure after severe plastic deformation.

Key words: longitudinal ultrasound, acoustic absorption, severe plastic deformation, non-equilibrium grain boundary, dislocations, relaxation.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i04/0483.html

DOI: https://doi.org/10.15407/mfint.44.04.0483

PACS: 43.35.Ae, 43.35.Bf, 43.35.Cg, 61.72.-y, 62.80.+f, 93.30.Tr

Citation: O. S. Bulatov, V. S. Klochko, A. V. Korniyets, V. I. Spitsyna, I. I. Papirov, A. I. Pikalov, and A. V. Shokurov, Velocity and Absorption of Longitudinal Ultrasound in an Extruded Mg–5% Sc Alloy, Metallofiz. Noveishie Tekhnol., 44, No. 4: 483—491 (2022)


REFERENCES
  1. Z. Yang, J. P. Li, J. X. Zhang, G. W. Lorimer, and J. Robson, Acta Metall. Sinica (English Letters), 21, Iss. 5: 313 (2008). Crossref
  2. A. X. Amal Rebin, S. Kumaran, and T. Srinivasa Rao, Mater. Sci. Forum, 710: 132 (2012). Crossref
  3. V. A. Shalomeev, N. A. Lysenko, E. I. Tsivirko, V. V. Lukinov, and V. V. Klochikhin, Metal Sci. Heat Treatment, 50, No. 1: 34 (2008). Crossref
  4. Sri Lathabai and P. G. Lloyd, Acta Mater., 50, Iss. 17: 427 (2002). Crossref
  5. C. J. Silva, A. Kula, R. K. Mishra, and M. Niewczas, J. Alloys Compd., 687, No. 5: 548 (2016). Crossref
  6. Somjeet Biswas, Satyaveer Singh Dhinwal, and Satyam Suwas, Acta Mater., 58: 3247 (2010). Crossref
  7. F. I. Nohrin, Pis'ma v ZhETF, 13, No. 38: 71 (2012).
  8. A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Proc. R. Soc. London, Ser. A, 462: 2607 (2006). Crossref
  9. A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B, 72: 174111 (2005). Crossref
  10. A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Acoust. Soc. Am., 121: 3418 (2007). Crossref
  11. A. K. Gupta, A. Gupta, S. Tripathi et al., Universal J. Mater. Sci., 1, No. 2: 63 (2013). Crossref
  12. V. S. Postnikov, Vnutrenneye Treniye v Metallakh [Internal Friction in Metals] (Moscow: Metallurgiya: 1974), p. 301 (in Russian).
  13. V. N. Chuval'deev, Neravnovesnyye Granitsy Zeren v Metallakh. Teoriya i Prilozheniya [Nonequilibrium Grain Boundaries in Metals. Theory and Application] (Moscow: Fizmatlit: 2004) (in Russian).
  14. V. N. Chuval'deev, Vestnik Nizhegorodskogo Universiteta, 5, No. 2: 124 (2010) (in Russian).
  15. G. Wilde and S. Divinski, Mater. Transactions, 60, Iss. 7: 1302 (2019). Crossref