Modelling of Radiation-Induced Segregation in Fe–9 at.% Cr Alloy with Alloy Dislocation Subsystem Considered

R. V. Skorokhod, O. V. Koropov

Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine

Received: 08.09.2020; final version - 24.12.2021. Download: PDF

For the Fe–9 at.% Cr alloy, radiation-induced segregation is simulated in the model based on the first and second Fick’s laws with inverse Kirkendall effect considered. The governing quantitative characteristics of radiation-induced segregation are systematized and calculated. Such characteristics include the following: concentration profiles of Cr atoms and point defects, surface concentration of Cr atoms, the value of surface enrichment (depletion) of Cr atoms, the full width of the concentration profile of Cr atoms at half maximum enrichment (depletion), segregation area of Cr and discriminant of radiation-induced segregation of Cr atoms in a steady state. The effect of the Fe–9 at.% Cr alloy dislocation subsystem on the specified characteristics of radiation-induced segregation is studied due to the absorption of nonequilibrium point defects. The dislocation subsystem is shown to suppress the effects of radiation-induced segregation. The concentration profiles of Cr atoms and point defects at the selected values of dislocation densities in the alloy dislocation subsystem (0, 10$^{12}$ m$^{-2}$, 10$^{14}$ m$^{-2}$, 10$^{16}$ m$^{-2}$) are calculated. For the values of dislocation densities, the dependence of the surface enrichment of Cr atoms on the irradiation dose increased from 10$^{-4}$ dpa to 10$^{2}$ dpa is studied and the dependences of the governing quantitative characteristics of radiation-induced segregation on temperature changed from 250°С to 650°С are analysed.

Key words: radiation-induced segregation, concentrated metal alloys, alloy dislocation subsystem, point defects, concentration profiles, surface enrichment, computer modeling.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i06/0691.html

DOI: https://doi.org/10.15407/mfint.44.06.0691

PACS: 07.05.Tp, 61.72.J-, 61.80.Az, 61.80.Hg, 61.82.Bg, 66.30.-h

Citation: R. V. Skorokhod and O. V. Koropov, Modelling of Radiation-Induced Segregation in Fe–9 at.% Cr Alloy with Alloy Dislocation Subsystem Considered, Metallofiz. Noveishie Tekhnol., 44, No. 6: 691—711 (2022) (in Ukrainian)


REFERENCES
  1. G. S. Was, Fundamentals of Radiation Materials Science. Metals and Alloys. 2nd Ed. (New York: Springer: 2017). Crossref
  2. A. Aitkaliyeva, L. He, H. Wen, B. Miller, X. M. Bai, and T. Allen, Structural Materials for Generation IV Nuclear Reactors (Ed. P. Yvon) (Amsterdam: Elsevier: 2017), p. 253. Crossref
  3. S. J. Zinkle, H. Tanigawa and B. D. Wirth, Structural Alloys for Nuclear Energy Applications (Eds. G. R. Odette and S. J. Zinkle) (Amsterdam: Elsevier: 2019), p. 163. Crossref
  4. G. S. Was and S. Ukai, Structural Alloys for Nuclear Energy Applications (Eds. G. R. Odette and S. J. Zinkle) (Amsterdam: Elsevier: 2019), p. 293.
  5. V. N. Voevodin and I. M. Neklyudov, Evolyutsiya Strukturno-Fazovogo Sostoyaniya i Radiatsionnaya Stoykost' Konstruktsionnykh Materialov [The Evolution of the Structural Phase State and Radiation Resistance of Structural Materials] (Kyiv: Naukova Dumka: 2006) (in Russian).
  6. V. N. Voevodin and I. M. Neklyudov, 'Visnyk Kharkivs'koho Natsional'noho Universytetu'. Seriya Fizychna 'Yadra, Chastynky, Polya', 746, Iss. 4 (32): 3 (2006) (in Russian).
  7. A. Gritsenko, V. Demekhin, V. Il'kovich, V. Bukanov, and E. Vasil'eva, Yaderna ta Radiatsiyna Bezpeka, 50: 29 (2011) (in Russian).
  8. J. P. Wharry and G. S. Was, J. Nucl. Mater., 442: 7 (2013). Crossref
  9. C. Zheng and D. Kaoumi, Mater. Charact., 134: 152 (2017). Crossref
  10. C. Zheng, M. A. Auger, M. P. Moody, and D. Kaoumi, J. Nucl. Mater., 491: 162 (2017). Crossref
  11. H.-H. Jin, S. S. Hwang, M. J. Choi, G.-G. Lee, and J. Kwon, J. Nucl. Mater., 513: 271 (2019). Crossref
  12. X. Liu, J. G. Gigax, J. D. Poplawsky, W. Guo, H. Kim, L. Shao, F. A. Garner, and J. F. Stubbins, Materialia, No. 9: 100542 (2020). Crossref
  13. B. D. Wirth, G. R. Odette, J. Marian, L. Ventelon, J. A. Young-Vandersall, and L. A. Zepeda-Ruiz, J. Nucl. Mater., 329-333 (Part A): 103 (2004). Crossref
  14. A. J. Ardell and P. Bellon, Current Opinion in Solid State and Materials Science, 20, No. 3: 115 (2016). Crossref
  15. Ya. I. Frenkel', Vvedenie v Teoriyu Metallov [Introduction to the Theory of Metals] (Leningrad: Nauka: 1972) (in Russian).
  16. A. M. Kosevich, Fizicheskaya Mekhanika Real'nykh Kristallov [Physical Mechanics of Real Crystals] (Kyiv: Naukova Dumka: 1981) (in Russian).
  17. S. A. Kotrechko and Yu. Ya. Meshkov, Predel'naya Prochnost'. Kristally, Metally, Konstruktsii [Strength of Crystals, Metals, and Structures] (Kyiv: Naukova Dumka: 2008) (in Russian).
  18. A. S. Bakai, O. V. Borodin, V. V. Bryk, V. N. Voyevodin, V. F. Zelenskij, I. M. Neklyudov, P. V. Platonov, and A. A. Turkin, J. Nucl. Mater., 185: 260 (1991). Crossref
  19. A. S. Bakay and A. A. Turkin, Radiatsionno-Indutsirovannaya Modifikatsiya Fazovoy Diagrammy Binarnogo Splava [Radiation-Induced Modification of the Phase Diagram of a Binary Alloy] (Moscow: TsNIIatominform: 1988) (in Russian).
  20. A. A. Turkin and A. S. Bakay, Voprosy Atomnoy Nauki i Tekhniki, Iss. 4 (89): 47 (2006) (in Russian).
  21. A. A. Turkin, Problemy Teoreticheskoy i Matematicheskoy Fiziki. Nauchnye Trudy, Vyp. 3 [Problems of Theoretical and Mathematical Physics. Scientific Works, Vol. 3] (Ed. A. G. Zagorodniy, N. F. Shul'ga, and V. V. Yanovskiy) (Kharkiv: KhNU imeni V. N. Karazina: 2019), p. 58 (in Russian).
  22. A. A. Turkyn, Teoriya Fazovykh Peretvoren' u Neuporyadkovanykh Splavakh Zamishchennya pid Oprominennyam [Theory of Phase Transformations in Disordered Substitutional Alloys under Irradiation] (Dis.  Dr. Sci. (Phys.-Math.)) (Kharkiv: 2010) (in Ukrainian).
  23. R. Bullough and R. C. Newman, Rep. Prog. Phys., 33, No. 1: 101 (1970). Crossref
  24. H. Wiedersich, P. R. Okamoto, and N. Q. Lam, J. Nucl. Mater., 83: 98 (1979). Crossref
  25. J. P. Wharry, Z. Jiao, and G. S. Was, J. Nucl. Mater., 425: 117 (2012). Crossref
  26. J. P. Wharry and G. S. Was, Acta Mater., 65: 42 (2014). Crossref
  27. R. V. Skorokhod, O. M. Buhay, V. M. Bilyk, V. L. Denysenko, and O. V. Koropov, Skhidno-Yevropeys'kyy Fizychnyy Zhurnal, 5, No. 1: 61 (2018).
  28. O. V. Koropov and R. V. Skorokhod, IX International Scientific-Practical Conference 'Mathematics in Modern Technical University' (Dec. 28-29, 2020, Kyiv) (Vinnytsia: FOP Yu. V. Kushnir: 2021), p. 80 (in Ukrainian). Crossref
  29. O. V. Koropov, 18th International Scientific Mykhailo Kravchuk Conference (Oct. 7-10, 2017) (Kyiv: NTUU «KPI»: 2017), vol. 1, p. 86 (in Ukrainian).
  30. O. V. Koropov, 17th International Scientific Mykhailo Kravchuk Conference (May 19-20, 2016) (Kyiv: NTUU «KPI»: 2016), vol. 1, p. 161 (in Ukrainian).
  31. F. Soisson, J. Nucl. Mater., 349: 235 (2006). Crossref
  32. K. G. Field, L. M. Barnard, C. M. Parish, J. T. Busby, D. Morgan, and T. R. Allen, J. Nucl. Mater., 435: 172 (2013). Crossref
  33. D. S. Gelles, J. Nucl. Mater., 108-109: 515 (1982). Crossref
  34. S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Yu. V. Konobeev, J. Nucl. Mater., 256: 247 (1998). Crossref
  35. Yu. V. Konobeev, A. M. Dvoriashin, S. I. Porollo, and F. A. Garner, J. Nucl. Mater., 355: 124 (2006). Crossref
  36. W.-Y. Chen, Y. Miao, J. Gan, M. A. Okuniewski, S. A. Maloy, and J. F. Stubbins, Acta Mater., 111: 407 (2016). Crossref
  37. S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B. D. Wirth, M. Asta, and D. Morgan, J. Nucl. Mater., 411: 1 (2011). Crossref
  38. C.-C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, and A. Barbu, Nat. Mater., 4: 68 (2005). Crossref
  39. K. Vörtler, M. Mamivand, L. Barnard, I. Szlufarska, F. A. Garner, and D. Morgan, J. Nucl. Mater., 479: 23 (2016). Crossref
  40. P. Olsson, C. Domain, and J. Wallenius, Phys. Rev. B, 75: 014110 (2007). Crossref
  41. H.-E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger, and J. Diehl, Scripta Metallurgica, 11: No. 9: 803 (1977). Crossref
  42. T. R. Allen and G. S. Was, Acta Mater., 46, No. 10: 3679 (1998). Crossref
  43. S. J. Zinkle and J. T. Busby, Mater. Today, 12, No. 11: 12 (2009). Crossref
  44. D. Buckthorpe, Structural Materials for Generation IV Nuclear Reactors (Ed. P. Yvon) (Amsterdam: Elsevier: 2017), p. 1. Crossref