Effect of TEG on Oxidation of TiC–ZrC Equimolar Blend at Mechanical Alloying

T. G. Avramenko, A. M. Kuryliuk, O. I. Nakonechna, N. N. Belyavina

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 04.02.2022; final version - 19.05.2022. Download: PDF

A detailed x-ray diffraction study of TiC–ZrC equimolar blend at mechanical alloying in a planetary ball mill is provided. An essential oxidation of carbide components is established. As found, Oxygen from the charge and reaction zone of the mill promotes gradual decomposition of ZrC with the formation of cubic c-ZrO$_{2}$, which further transforms into its monoclinic modification m-ZrO$_{2}$. TiC accumulates the Oxygen in tetrahedral voids of its crystal lattice, forming Ti$_{x}$CO$_{y}$ oxycarbide. Addition of 3% vol. TEG powder to the initial TiC–ZrC charge completely inhibits the oxidation.

Key words: mechanical alloying, thermoexfoliated graphite, carbide, crystal structure, x-ray diffraction.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i06/0713.html

DOI: https://doi.org/10.15407/mfint.44.06.0713

PACS: 61.05.C-, 61.66.Fn, 81.05.uf, 81.16.Pr, 81.20.Ev

Citation: T. G. Avramenko, A. M. Kuryliuk, O. I. Nakonechna, and N. N. Belyavina, Effect of TEG on Oxidation of TiC–ZrC Equimolar Blend at Mechanical Alloying, Metallofiz. Noveishie Tekhnol., 44, No. 6: 713—724 (2022)


REFERENCES
  1. H. Zhao and Y. B. Cheng, Ceramics International, 25, No. 4: 353 (1999). Crossref
  2. G. Wen, S. B. Li, B. S. Zhang, and Z. X. Guo, Acta Mater., 49, No. 8: 1463 (2001). Crossref
  3. D. Vallauri, I. A. Adrián, and A. Chrysanthou, J. Eur. Ceramic Society, 28, No. 8: 1697 (2008). Crossref
  4. Y. Wang, M. Yao, Z. Hu, H. Li, J. H. Ouyang, L. Chen, S. Huo, and Y. Zhou, Ceramics International, 44, No. 18: 23297 (2018). Crossref
  5. Y. Yuan, W. Ji, S. Dai, Z. Zhang, H. Zhang, and L. Xu, International Journal of Refractory Metals and Hard Materials, 84, No. 105002 (2019). Crossref
  6. M. Yao, Y. Wang, L. Chen, J. Ouyang, H. Li, H. Gu, and Y. Zhou, Mater. Sci. Engineering: A, 819: 141510. (2021). Crossref
  7. D. Wang, H. Wang, S. Sun, X. Zhu, G. Tu, International Journal of Refractory Metals and Hard Materials, 45: 95 (2014). Crossref
  8. M. Dashevskyi, O. Boshko, O. Nakonechna, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 39, No. 4: 541 (2017). Crossref
  9. Y. Zhou, Phase Formation and Thermal Conductivity of Zirconium Carbide (PhD Thesis) (Missouri University of Science and Technology: 2021).
  10. Y. Li, H. Katsui, and T. Goto, Ceramics International, 41, No. 10: 14258 (2015). Crossref
  11. Y. Li, H. Katsui, and T. Goto, Ceramics International, 41, No. 5: 7103 (2015). Crossref
  12. Y. Li, H. Katsui, and T. Goto, J. Eur. Ceramic Society, 36, No. 15: 3795 (2016). Crossref
  13. H. Li, G. He, N. Lu, and J. Li, J. Ceramic Society of Japan, 129, No. 9: 574 (2021). Crossref
  14. B. C. Ocak, B. Yavas, I. Akin, F. Sahin, and G. Goller, Ceramics International, 44, No. 2: 2336 (2018). Crossref
  15. O. Popov, T. Avramenko, and V. Vishnyakov, Materials Today Communications, 26, 101756 (2021). Crossref