Determination of Technological Characteristics of Multicomponent Nickel Alloys by Calculation Methods

S. V. Maksymova, V. V. Voronov, P. V. Kovalchuk

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 03.04.2022; final version - 02.06.2022. Download: PDF

The main goal of this work is to determine the melting temperature range and phase composition of multicomponent Ni-based alloys by applying the methods of design of alloys (CALPNAD method) in combination with statistical processing of the results. In particular, the liquidus and solidus temperatures for a number of experimental alloys of the Ni–Cr–Co–Al–(Me) system are calculated. The degree of influence of adhesive-active elements (Ti, Nb, Zr) on the liquidus temperature and phase composition of alloys of this system is established. The approximate content of alloying elements to ensure the required melting point of experimental filler metals is determined. As shown, alloying zirconium significantly reduces the solidus temperature thus significantly expanding the melting range of experimental alloys. This effect is associated with the formation of low-temperature zirconium eutectic. The influence of titanium and niobium on the amount and thermal stability of the $\gamma$'-phase in experimental alloys is studied. The influence of refractory components (Mo, W, Re) on the presence of topologically close-packed (TCP) phases is studied. As noted, partial replacement of tungsten by rhenium in experimental Ni–Cr–Co–Al–(Me)-based alloys significantly reduces the amount of harmful $\mu$- and p-phases.

Key words: brazing, brazing filler metal, foundry heat-resistant nickel alloys, mathematical modelling (CALPHAD), adhesive-active components.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i07/0849.html

DOI: https://doi.org/10.15407/mfint.44.07.0849

PACS: 06.60.Vz, 61.43.-j, 61.66.Dk, 64.70.D-, 65.40.gh, 81.30.Bx

Citation: S. V. Maksymova, V. V. Voronov, and P. V. Kovalchuk, Determination of Technological Characteristics of Multicomponent Nickel Alloys by Calculation Methods, Metallofiz. Noveishie Tekhnol., 44, No. 7: 849—860 (2022) (in Ukrainian)


REFERENCES
  1. V. V. Kvasnitskiy, G. F. Myal'nitsa, M. V. Matvienko, E. A. Buturlya, and D. Chun'lin', Avtomaticheskaya Svarka, No. 8: 22 (2019) (in Russian).
  2. A. G. Evgenov, I. A. Galushka, S. V. Shurtakov, and V. A. Ignatov, Trudy VIAM, No. 2: 3 (2019) (in Russian). Crossref
  3. V. Kvasnytskyi, V. Korzhyk, V. Kvasnytskyi, H. Mialnitsa, D. Chunlin, T. Pryadko, M. Matvienko, and Y. Buturlia, Eastern-European J. Enterprise Technologies, No. 6: 6 (2020). Crossref
  4. V. P. Kuznetsov, V. P. Lesnikov, and N. A. Popov, Struktura i Svoystva Monokristallicheskikh Zharoprochnykh Nikelevykh Splavov [Structure and Properties of Single-Crystal Heat-Resistant Nickel Alloys] (Yekaterinburg: Izdatel'stvo Ural'skogo Universiteta: 2016) (in Russian).
  5. E. N. Kablov, N. V. Petrushin, I. L. Svetlov, and I. M. Demonis, Tekhnologiya Legkikh Splavov, No. 2: 6 (2007) (in Russian).
  6. S. H .Zhou, Y. Wang, J. Z. Zhu, T. Wang, L. Q. Chen, R. A. MacKay, and Z. K. Liu, Superalloys 2004 (Champion: 2004), p. 969. Crossref
  7. S. V. Gayduk, V. V. Kononov, and V. V. Kurenkova, Sovremennaya Elektrometallurgiya, 126, No. 1: 44 (2017) (in Russian). Crossref
  8. N. Saunders, M. Fahrmann, and C. J. Small, Superalloys 2000 (Champion: 2000), p. 803. Crossref
  9. M. Markl, A. Müller, and N. Ritter, Metall Mater. Trans. A, 49: 4134 (2018). Crossref
  10. W. Huang and Y. A. Chang, Mater. Sci. Eng. A, 259: 110 (1999). Crossref
  11. M. Perrut, Aerospace Lab., No. 9: 1 (2015). Crossref
  12. N. Saunders, Superalloys 1996 (Champion: 1996), p. 782.
  13. H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: the Calphad Method (Cambridge: Cambridge University Press: 2007). Crossref
  14. https://www.sentesoftware.co.uk/jmatpro.
  15. N. Saunders, Z. Guo, X. Li, A. P. Miodownik, and J-Ph. Schillé, JOM, 55, No. 12: 60 (2003). Crossref
  16. A. Sidorov, SAPR i Grafika, 4: 66 (2015) (in Russian).
  17. E. A. Shein, Trudy VIAM, No. 3(39): 10 (2016) (in Russian). Crossref
  18. S. V. Maksymova, V. V. Voronov, and P. V. Kovalchuk, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1539 (2019) (in Russian). Crossref
  19. S. V. Maksymova, P. V. Kovalchuk, and V. V. Voronov, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1079 (2021) (in Ukrainian). Crossref
  20. G. I. Morozova, Fenomen γ'-Fazy v Zharoprochnykh Nikelevykh Splavakh [The Phenomenon of γ'-Phase in Heat-Resistant Nickel Alloys] (in Russian) (1992).
  21. R. Darolia, D. F. Lahrman, and R. D. Field, Superalloys 1988 (Champion: 1988), p. 255. Crossref