Influence of Alloying Elements on Composition of Primary Carbides in Ni–11.5Cr–5Co–3.6Al–4.5Ti–7W–0.8Mo–0.06C System

V. Y. Ol'shanetskii, O. A. Glotka

Zaporizhzhia Polytechnic National University, 64 Zhukovsky Str., UA-69063 Zaporizhzhya, Ukraine

Received: 22.03.2021; final version - 16.06.2022. Download: PDF

In this work, theoretical modelling of the thermodynamic processes of the release of excess phases is carried out using the CALPHAD method. As well as a practical study of the structure and distribution of chemical elements in carbides, depending on alloying using scanning electron microscopy. It has been established that in typical carbides, for the system Ni–11.5Cr–5Co–3.6Al–4.5Ti–7W–0.8Mo–0.06C, there is a tendency to degeneration and phase reactions depending on the level of alloying with the given elements. The mathematical dependences of the influence of alloying on the temperature of precipitation (dissolution) of carbides and the change in the chemical composition of the alloy on the content of elements in carbides are established. The obtained dependences were experimentally confirmed using scanning electron microscopy on nickel-based superalloys.

Key words: superalloy, carbides, modelling, tantalum, scanning electron microscopy.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i07/0861.html

DOI: https://doi.org/10.15407/mfint.44.07.0861

PACS: 02.60.-x, 61.50.Ks, 61.66.-f, 64.10.+h, 64.75.+g, 68.37.Ef

Citation: V. Y. Ol'shanetskii and O. A. Glotka, Influence of Alloying Elements on Composition of Primary Carbides in Ni–11.5Cr–5Co–3.6Al–4.5Ti–7W–0.8Mo–0.06C System, Metallofiz. Noveishie Tekhnol., 44, No. 7: 861—871 (2022)


REFERENCES
  1. O. M. Horst, D. Schmitz, J. Schreuer, P. Git, H. Wang, C. Körner, and G. Eggeler, J. Mater. Sci., 56: 7637 (2021). Crossref
  2. B. Chen, W.-P. Wu, and M.-X. Chen, Acta Mech. Solida Sin., 34: 79 (2021). Crossref
  3. M. Mazzarisi, S. L. Campanelli, A. Angelastro, F. Palano, and M. Dassisti, Int. J. Adv. Manuf. Technol., 112: 157 (2021). Crossref
  4. W. Song, X. G. Wang, J. G. Li, Y.-S. Huang, J. Meng, Y.-H. Yang, J.-L. Liu, J.-D. Liu, Y.-Z. Zhou and X.-F. Sun, Acta Metall. Sin. (Engl. Lett.), 33: 1689 (2020). Crossref
  5. A. Borouni and A. Kermanpur, J. Mater. Eng. Perform., 29: 7567 (2020). Crossref
  6. O. A. Glotka, J. Achievements Mater. Manufacturing Eng., 1 (102): 5 (2020). Crossref
  7. Y. H. Kvasnytska, L. M. Ivaskevych, O. I. Balytskyi, I. I. Maksyuta, and H. P. Myalnitsa, Mater. Sci., 56, Iss. 3: 432 (2020). Crossref
  8. O. A. Balitskii, V. O. Kolesnikov, A. I. Balitskii, J. J. Eliasz, and M. R. Havrylyuk, Archives of Materials Science and Engineering, 104 (2): 49 (2020). Crossref
  9. S. Yang, J. Yun, and C. S. Seok, J. Mech. Sci. Technol., 34: 4605 (2020). Crossref
  10. B. Yin, G. Xie, X. Jiang, S. Zhang, W. Zheng, and L. Lo, Acta Metall. Sin. (Engl. Lett.), 33: 1433 (2020). Crossref
  11. A. Pandey and K. J. Hemker, JOM, 67: 1617 (2015). Crossref
  12. L. Chai, J. Huang, J. Hou, B. Lang, and L. Wang, J. Mater. Eng. Perform., 24, Iss. 6: 2287 (2015). Crossref
  13. A .A. Glotka and A. N. Moroz, Met. Sci. Heat Treat., 61: 521 (2019). Crossref
  14. C. Z. Zhu, R. Zhang, C. Y. Cui, Y. Z. Zhou, Y. Yuan, Z. S. Yu, X. Liu, and X. F. Sun, Metall. Mater. Trans. A, 52: 108 (2021). Crossref
  15. S. A. Oh, R. E. Lim, J. W. Aroh, A. C. Chuang, B. J. Gould, J. V. Bernier, N. Parab, T. Sun, R. M. Suter, and A. D. Rollett, JOM, 73, Iss. 1: 212 (2021). Crossref
  16. Y. Chen and H. M. Wang, J. Mater. Res., 21: 375 (2006). Crossref
  17. Y. H. Kong, Q. Z. Chen, and D. M. Knowles, J. Mater. Sci., 39: 6993 (2004). Crossref
  18. A. I. Balitskii and L. M. Ivaskevych, Strength of Materials, 50, Iss. 6: 880 (2018). Crossref
  19. S. Tin, T. M. Pollock, and W. Murphy, Metall. Mater. Tran. A, 32: 1743 (2001). Crossref
  20. N. V. Petrushin, E. M. Visik, M. A. Gorbovets, and R. M. Nazarkin, Russ. Metall., 2016: 630 (2016). Crossref
  21. Z. Yu, J. Qiang, J. Zhang, and L. Liu, J. Mater. Res., 30: 2064 (2015). Crossref
  22. G. D. Pigrova and A. I. Rybnikov, Phys. Metals Metallogr., 114: 593 (2013). Crossref
  23. A. A. Glotka and S. V. Gaiduk, J. Appl. Spectrosc., 87, 812 (2020). Crossref
  24. A. Balyts'kyi, Procedia Structural Integrity, 16: 134 (2019). Crossref
  25. H. Ohtani, Springer Handbooks (Berlin, Heidelberg: Springer: 2006), p. 1001. Crossref
  26. N. Saunders, U. K. Z. Guo, X. Li, A. P. Miodownik, and J.-Ph. Schillé, JOM, 55: 60 (2003). Crossref
  27. S. Tin and T. M. Pollock, Metall. Mater. Trans. A, 34, 1953 (2003). Crossref
  28. K. G. Buchanan, M. V. Kral, and C. M. Bishop, Metall. Mater. Trans. A, 45: 3373 (2014). Crossref
  29. B.-P. Wu, L.-H. Li, J.-T. Wu, Z. Wang, Y.-B. Wang, X.-F. Chen, J.-X. Dong, and J.-T. Li, Int. J. Miner. Metall. Mater., 21: 58 (2014). Crossref
  30. A. A. Hlotka and S. V. Haiduk, Mater. Sci., 55: 878 (2020). Crossref
  31. A. G. Andrienko, S. V. Gayduk, V. V. Kononov, Novi Materialy i Tekhnologii v Metalurgiyi ta Mashinobuduvanni, 2: 81 (2012) (in Russian). Crossref