Hydrogen Absorption and Desorption by Niobium and Tantalum

V. A. Dekhtyarenko, D. G. Savvakin, O. O. Stasiuk, D. V. Oryshych

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 25.05.2022; final version - 13.06.2022. Download: PDF

Studies are shown that tantalum and niobium have different kinetics of hydrogen uptake. Tantalum, in contrast to niobium, is able absorb actively hydrogen at room temperature, reaching a hydrogen capacity at the level of TaN$_{1.9}$. Active absorption of hydrogen by niobium is observed only at heating to temperatures of 400–500°C, reaching the hydrogen capacity of NbH$_{1.23}$. The kinetics of hydrogen evolution from both hydrogen-saturated metals is similar, the process takes place at room temperature, but in different pressure conditions.

Key words: niobium, tantalum, hydrogenation, dehydrogenation, powder.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i07/0887.html

DOI: https://doi.org/10.15407/mfint.44.07.0887

PACS: 61.66.Dk, 61.72.Yx, 64.75.-g, 68.43.Mn, 82.30.Rs, 82.80.-d

Citation: V. A. Dekhtyarenko, D. G. Savvakin, O. O. Stasiuk, and D. V. Oryshych, Hydrogen Absorption and Desorption by Niobium and Tantalum, Metallofiz. Noveishie Tekhnol., 44, No. 7: 887—897 (2022)


REFERENCES
  1. O. M. Ivasyshyn, D. H. Savvakin, V. A. Dekhtyarenko, and O. O. Stasiuk, Mater. Sci., 54: 266 (2018). Crossref
  2. V. A. Dekhtyarenko, D. G. Savvakin, V. I. Bondarchuk, V. M. Shyvanyuk, T. V. Pryadko, and O. O. Stasiuk, Prog. Phys. Met., 22: 307 (2021). Crossref
  3. V. Goltsov, Yavlenie Upravlyaemogo Vodorodofazovogo Naklepa Metallov i Splavov. Svoystva Konstruktsionnykh Materialov pri Vozdeystvii Rabochikh Sred [The Phenomenon of Controlled Hydrogen-Phase Hardening of Metals and Alloys. Properties of Structural Materials under the Influence of Working Environments] (Kyiv: 1980) (in Russian).
  4. Z. Fang, P. Sun, and H. Wang, Advanced Engineering Mater., 14, No. 6: 383 (2012). Crossref
  5. Z. Z. Fang, J. D. Paramore, P. Sun, K. S. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Reviews, 63, No. 7: 407 (2018). Crossref
  6. O. Ivasishin, D. Eylon, V. Bondarchuk, and D. Savvakin, Defect and Diffusion Forum, 277: 177 (2008). Crossref
  7. O. M. Ivasishin, A. N. Demidik, and D. G. Savvakin, Powder Metall. Met. Ceram., 38: 482 (1999). Crossref
  8. R. Kulagin, A. Mazilkin, Y. Beygelzimer, D. Savvakin, I. Zverkova, D. Oryshych, and H. Hahn, Mater. Letters, 233: 31 (2018). Crossref
  9. O. M. Ivasishin, D. G. Savvakin, D. V. Oryshych, O. O. Stasiuk, and Li Yuanyuan, MATEC Web Conf., 321: 03009 (2020). Crossref
  10. O. Ivasishin, D. Savvakin, F. Froes, and K. Bondareva, Powder Metall. Met. Ceram., 41, No. 7/8: 382 (2002). Crossref
  11. O. Ivasishin, D. Savvakin, K. Bondareva, V. Mokson, and V. Duz, Sci. Innovation, 1, No. 2: 44 (2005) (in Russian).
  12. D. G. Savvakin and M. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 35, No. 3: 349 (2013) (in Russian).
  13. M. Navarro, A. Michiardi, O. Castaño, and J. Planell, J. Royal Society Interface, 5, No. 27: 1137 (2008). Crossref
  14. W. Khan, M. Kapoor, and N. Kumar, Acta Biomaterialia, 3, No. 4: 541 (2007). Crossref
  15. L. Liu, C. Yang, F. Wang, S. Qu, X. Li, W. Zhang, Y. Li, and L. Zhang, Mater. Design, 79: 1 (2015). Crossref
  16. Y. Zhang, X. Wang, W. Zhang, W. Huo, J. Hu, and L. Zhang, Mat. Sci. Engineering A, 696: 360 (2017). Crossref
  17. M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Prog. Mat. Sci., 54 No. 3: 397 (2009). Crossref
  18. L. Zhang, K. Kim, P. Yu, W. Zhang, U. Kunz, and J. Eckert, J. Alloys Compds., 428, No. 1-2: 157 (2007). Crossref
  19. M. Calin, L. Zhang, and J. Eckert, Scripta Mater., 57, No. 12: (2007). Crossref
  20. M. Niinomi, Mater. Sci. Engineering A, 243, Iss. 1-2: 231 (1998). Crossref
  21. F. Cardarelli, Materials Handbook: A Concise Desktop Reference (Springer: 2000). Crossref
  22. Yu. V. Levinsky, Yu. B. Patrikeev, and Yu. M. Filyand, Vodorod v Metallakh i Intermetallidakh. Termodinamicheskie, Kineticheskie i Tekhnologicheskie Kharakteristiki Metall-Vodorodnykh Sistem [Hydrogen in Metals and Intermetallics. Thermodynamic, Kinetic and Technological Characteristics of Metal-Hydrogen Systems] (Moscow: Scientific World: 2017) (in Russian).
  23. V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, Metallofiz. Noveishie Tekhnol., 37, No. 4: 521 (2015). Crossref
  24. V. G. Ivanchenko, V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, and I. K. Evlash, Mater. Sci., 51: 492 (2016). Crossref
  25. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 37, No. 5: 683 (2015) (in Russian). Crossref
  26. G. F. Kobzenko and A. A. Shkola, Mater. Diagnos., 56: 41 (1990) (in Russian).
  27. O. M. Ivasishin, O. B. Bondarchuk, M. M. Gumenyak, and D. G. Savvakin, Phys. Chem. Solid State, 12, No. 4: 900 (2011) (in Ukrainian).
  28. D. H. Savvakin, M. M. Humenyak, M. V. Matviichuk, and O. H. Molyar, Mater. Sci., 47: 651 (2012). Crossref
  29. O. I. Dekhtyar, O. M. Ivasishin, D. Yu. Kovalev, O. M. Korduban, V. K. Prokudi-na, V. I. Ratnikov, D. G. Savvakin, A. Ye. Sychev, and M. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1153 (2014) (in Russian). Crossref