Structure, Phase Composition, and Hydrogen Absorption Properties of Multiphase Alloys of Ti–Zr–Mn–V System Alloyed with Holmium

V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, V. I. Bondarchuk

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 04.05.2022; final version - 19.05.2022. Download: PDF

The effect of an RE element (holmium) on the phase composition, microstructure, and hydrogen absorption properties of multiphase alloys of the Ti–Zr–Mn–V system comprised of the Laves phase and b.c.c. solid solution is studied. It is found out that holmium practically does not dissolve in the initial phases of the alloy, and it forms a new phase in combination with oxygen, holmium oxide. The crystallites of holmium oxide precipitate on the surface of the crystallites of the Laves phase and b.c.c. solid solution. It is determined that the formation of the new phase leads to a change in the structure of the initial alloys from eutectic to multiphase, that causes an increase in the grain surface area of the phase constituents. It is shown that the crystallites of holmium oxide raise the temperatures at which hydrogen absorption and desorption occur, as well as decrease the hydrogen capacity of the alloy.

Key words: Laves phase, b.c.c. solid solution, multiphase alloy, microstructure, phase composition, hydrogenation.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i07/0913.html

DOI: https://doi.org/10.15407/mfint.44.07.0913

PACS: 61.66.Dk, 61.72.Yx, 64.75.-g, 68.43.Mn, 82.30.Rs, 82.80.-d

Citation: V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, and V. I. Bondarchuk, Structure, Phase Composition, and Hydrogen Absorption Properties of Multiphase Alloys of Ti–Zr–Mn–V System Alloyed with Holmium, Metallofiz. Noveishie Tekhnol., 44, No. 7: 913—926 (2022)


REFERENCES
  1. M. B. Ley, L. H. Jepsen, Y. S. Lee, Y. W. Cho, J. Bellosta von Colbe, M. M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher, and T. R. Jensen, Mater. Today, 17: 122 (2014). Crossref
  2. M. V. Lototskyy, Int. J. Hydrogen Energy, 41: 2739 (2016). Crossref
  3. D. Parra, M. Gillott, and G. S. Walker, Int. J. Hydrogen Energy, 41: 5215 (2016). Crossref
  4. K. T. Mollera, T. R. Jensena, E. Akiba, and H.-W. Li, Prog. Nat. Sci.: Mat. Int., 27: 34 (2017). Crossref
  5. J. Bellosta von Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D. M. Grant, M. N. Guzik, I. Jacob, E. H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M. V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D. A. Sheppard, A. Stuart, G. Walker, C. J. Webb, H. Yang, V. Yartys, A. Züttel, and M. Dornheim, Int. J. Hydrogen Energy, 44: 7780 (2019). Crossref
  6. J. G. Park, H. Y. Jang, S. C. Han, P. S. Lee, and J. Y. Lee, Mat. Sci. Eng. A, 329-331: 351 (2002). Crossref
  7. E. I. Gkanas, M. Khzouz, G. Panagakos, T. Statheros, G. Mihalakakou, G. I. Siasos, G. Skodras, and S. S. Makridis, Energy, 142: 518 (2018). Crossref
  8. M. Lototskyy, I. Tolj, Y. Klochko, M. W. Davids, D. Swanepoel, and V. Linkov, Int. J. Hydrogen Energy, 45: 7958 (2020). Crossref
  9. T. R. Somo, M. W. Davids, M. V. Lototskyy, M. J. Hato, and K. D. Modibane, Materials, 14: 1833 (2021). Crossref
  10. V. A. Dekhtyarenko, D. G. Savvakin, V. I. Bondarchuk, V. M. Shyvanyuk, T. V. Pryadko, and O. O. Stasiuk, Prog. Phys. Met., 22: 307 (2021). Crossref
  11. J. L. Bobet and T. B. Darriet, Int. J. Hydrogen Energy, 25: 767 (2000). Crossref
  12. S. Samboshi, N. Masahashi, and S. Hanada, Acta Mater., 49: 927 (2001). Crossref
  13. S. Samboshi, N. Masahashi, and S. Hanada, J. Alloys Compds., 352: 210 (2003). Crossref
  14. X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy, 25: 649 (2000). Crossref
  15. N. Bouaziz, M. Bouzid, and A. B. Lamine, Int. J. Hydrogen Energy, 43: 1615 (2018). Crossref
  16. T. Huang, Z. Wu, G. Sun, and N. Xu, Intermetallics, 15: 593 (2007). Crossref
  17. P. Liu, X. Xie, L. Xu, X. Li, and T. Liu, Prog. Nat. Sci.: Mat. Int., 27: 652 (2017). Crossref
  18. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Oxford: Butterworth Heinemann: 1997).
  19. Z. Yao, L. Liu, X. Xiao, C. Wang, L. Jiang, and L. Chen, J. Alloys Compds., 731: 524 (2018). Crossref
  20. V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, Metallofiz. Noveishie Tekhnol., 37, No. 4: 521 (2015). Crossref
  21. T. V. Pryadko, V. A. Dekhtyarenko, K. M. Khranovs'ka, and H. S. Mohyl'nyi, Mater. Sci., 55: 854 (2020). Crossref
  22. I. Jacob, A. Stern, A. Moran, D. Shaltiel, and D. Davidov, J. Less-Common Met., 73: 369 (1980). Crossref
  23. H. Taizhong, W. Zhu, Y. Xuebin, C. Jinzhou, X. Baojia, H. Tiesheng, and X. Naixin, Intermetallics, 12: 91 (2004). Crossref
  24. J. A. Murshidi, M. Paskevicius, D. A. Sheppard, and C. E. Buckley, Int. J. Hydrogen Energy, 36: 7587 (2011). Crossref
  25. K. Young, T. Ouchi, J. Nei, and T. Meng, J. Power Sources, 281: 164 (2015). Crossref
  26. S. Khajavi, M. Rajabi, and J. Huot, J. Alloys Compds., 767: 432 (2018). Crossref
  27. V. G. Ivanchenko, V. A. Dekhtyarenko, T. V. Pryadko, and V. I. Nichiporenko, Metallofiz. Noveishie Tekhnol., 36, No. 6: 803 (2014) (in Russian).
  28. V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, and T. A. Kosorukova, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1455 (2019) (in Russian). Crossref
  29. G. F. Kobzenko and A. A. Shkola, Mater. Diagnos., 56: 41 (1990) (in Russian).
  30. J. R. Johnson, J. Less-Common Met., 73: 345 (1980). Crossref
  31. J. Bodega, J. F. Fernández, F. Leardini, J. R. Ares, and C. Sánchez, J. Phys. Chem. Solids, 72: 1334 (2011). Crossref
  32. V. G. Ivanchenko, V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, and I. K. Evlash, Mater. Sci., 51: 492 (2016). Crossref
  33. V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, V. I. Bondarchuk, and G. S. Mogylnyy, Int. J. Hydrogen Energy, 46: 8040 (2021). Crossref
  34. J. G. Niu and W. T. Geng, Acta Mater., 81: 194 (2014). Crossref