Сopper and Molybdenum-Based Nanocrystalline Materials

V. G. Grechanyuk$^{1}$, N. I. Grechanyuk$^{2}$, V. O. Chornovol$^{1}$, A. V. Kozyrev$^{1}$, V. I. Gots$^{1}$, A. V. Matsenko$^{1}$, V. A. Kulichenko$^{1}$, T. D. Grabina$^{1}$, Yu. I. Kozyreva$^{3}$

$^{1}$Kyiv National University of Construction and Architecture, 31 Povitroflotsky Ave., UA-03037 Kyiv, Ukraine
$^{2}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{3}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 28.09.2021; final version - 02.06.2022. Download: PDF

Experimental study of methods for obtaining nanocrystalline molybdenum- and copper-based materials on from two independent crucibles (UE-187 device) on a stationary and rotating substrate has been done. The interaction of the separating layer with condensed Cu–Mo materials was investigated. The influence of technological factors (substrate material, surface roughness, composition and thickness of the separating layer, temperature of the substrate, change of the vacuum, evaporation rate of starting materials) on the mechanical properties of Cu–Mo condensed materials (with Mo from 0 to 46.5% wt.) was analysed. As found, in materials with a Mo more than 14% wt. and temperature of the substrate 700°C, strength is a dramatic decrease due to the formation of pores. Increasing the temperature of the substrate to 900°C allowed obtaining condensed composite Cu–Mo materials with a refractory phase up to 45% wt. As established, the regularities of formation of the technological layer of Cu–Mo condensate depend on the thickness of the separating layer of calcium fluoride. Due to the determination of mechanical characteristics of condensed composite materials obtained on rotating substrates with different surface roughness, it was found that a decrease of the roughness of the substrates leads to an increase in the ultimate tensile strength and elongation. As established, structural defects in the form of rods formed on micro-droplets ejected from the evaporator are the cause of reduced strength and ductility of condensed composite materials.

Key words: electron-beam evaporation-condensation, composite materials, copper-based pseudo-alloys, molybdenum-based pseudo-alloys, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i07/0927.html

DOI: https://doi.org/10.15407/mfint.44.07.0927

PACS: 68.35.Ct, 68.55.Ln, 68.60.Bs, 68.65.Ac, 81.10.Bk, 81.15.Cd

Citation: V. G. Grechanyuk, N. I. Grechanyuk, V. O. Chornovol, A. V. Kozyrev, V. I. Gots, A. V. Matsenko, V. A. Kulichenko, T. D. Grabina, and Yu. I. Kozyreva, Сopper and Molybdenum-Based Nanocrystalline Materials, Metallofiz. Noveishie Tekhnol., 44, No. 7: 927—942 (2022) (in Ukrainian)


REFERENCES
  1. N. I. Grechanyuk, P. P. Kucherenko, A. G. Melnik, V. G. Grechanyuk, and A. Manulyk, The Minerals, Metals and Materials Series (Eds. T. S. Srivatsan and Manoj Gupta) (Springer: 2019), p. 105. Crossref
  2. N. I. Grechanyuk and V. G. Grechanyuk, Powder Metallurgy and Metal Ceramics, 56, Iss. 11-12: 633 (2018). Crossref
  3. N. I. Grechanyuk and V. G. Grechanyuk, Sovremennaya Elektrometallurgiya, 2: 43 (2019) (in Russian). Crossref
  4. I. M. Grechanyuk, Naukovo-Tekhnologichni Zasady Stvorennya Novykh Kompozytsiynykh Materialiv na Osnovi Nikelyu, Kobaltu, Tytanu i Midi ta Novitnyogo Elektronno-Promenevoho Obladnannya dlya Yikh Otrymannya [Scientific and Technological Principles of Creating New Composite Materials Based on Nickel, Cobalt, Titanium and Copper and the Latest Electron-Beam Equipment for Their Production] (PhD Thesis) (Kyiv: Frantsevich Institute for Problems of Materials Science, N.A.S.U.: 2021) (in Ukrainian).
  5. L. Orac, V. Grechanyuk, O. Metoseriu, and S. Constantinescu, The Annals of 'Dunarea de Jos' University of Galati. Fascicle IX, Metallurgy and Materials Science, 36, No. 1: 5 (2013).
  6. L. Orac, V. Grechanyuk, O. Metoseriu, and S. Constantinescu, The Annals of 'Dunarea de Jos' University of Galati. Fascicle IX, Metallurgy and Materials Science, 36, No. 1: 5 (2013).
  7. V. G. Grechanyuk, Elektricheskie Kontakty i Elektrody [Electrical Contacts and Electrodes] (Kyiv: 2012), p. 174 (in Ukrainian).
  8. N. I. Grechanyuk, V. A. Osokin, I. N. Grechanyuk, P. P. Kucherenko, R. V. Minakova, M. E. Golovkov, and G. E. Kopylova, Sovremennaya Elektrometallurgiya, No. 2 (83): 9 (2006) (in Russian).
  9. V. G. Grechanyuk, V. A. Denysenko, and L. Orac, Abstract of Conferinta Stiintifica UgalMat 2007 Tehnologii Si Materiale Avansate (Oct. 19-20, 2007) (Romania, Galati: 2007), p. 12.
  10. V. G. Grechanyuk, V. A. Denisenko, I. F. Rudenko, and L. Orak, Elektricheskie Kontakty i Elektrody [Electrical Contacts and Electrodes] (Kyiv: 2008), p. 130 (in Russian).
  11. I. N. Grechanjuk, V. G. Grechanjuk, and Y. U. Artuh, The Annals of 'Dunarea de Jos' University of Galati. Fascicle IX, Metallurgy and Materials Science, 32, No. 1: 5 (2009).
  12. V. A. Denisenko and V. G. Grechanyuk Sovremennaya Elektrometallurgiya, 4: 27 (2008) (in Russian).
  13. V. G. Grechanyuk, Fizyko-Mekhanichni Osnovy Formuvannya Kondensovanykh z Parovoi Fazy Kompozytsiynykh Materialiv na Osnovi Midi [Physical and Mechanical Bases for Forming Condensed from the Vapour Phase Composite Materials Based on Copper] (PhD Thesis) (Kyiv: Frantsevich Institute for Problems of Materials Science, N.A.S.U.: 2013) (in Ukrainian).
  14. I. M. Grechanyuk, Struktura, Vlastyvosti i Elektronno-Promeneva Tekhnologiya Otrymanykh Kompozytsiynykh Materialiv Cu-Mo-Zr-Y dlya Elektrychnykh Kontaktiv [Structure, Properties and Electron Beam Technology of the Obtained Cu-Mo-Zr-Y Composite Materials for Electrical Contacts] (PhD Thesis) (Kyiv: Frantsevich Institute for Problems of Materials Science, N.A.S.U.:2007) (in Ukrainian).
  15. R. V. Minakova,, M. I. Grechanyuk, V. H. Zatovskyi, M. E. Holovkova, H. E. Kopylova, O. P. Vasyleha, and D. H. Verbylo, Elektronnaya Mikroskopiya i Prochnost Materialov, 17: 37 (2010) (in Ukrainian).