Mössbauer and Magnetic Studies of Ultrafine Powders of the FeNiCrCoCu System Produced by Electric Spark Method in Different Liquid Media

V. M. Nadutov, A. O. Perekos, Ye. O. Svystunov, D. L. Vashchuk, V. Z. Voynash, S. Yu. Makarenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 14.04.2021; final version - 04.08.2022. Download: PDF

By electric spark dispersion were produced for the first time ultrafine powders (up to 5 $\mu$m) of high-entropy alloy (HEA) FeNiCoCrCu in various liquid media (ethanol, propanol, and water), and their effect on the phase composition and the ratio of the volume fractions of $\gamma_{1}$ and $\gamma_{2}$ phases was determined in comparison with this ratio in the original ingot. According to the analysis of the structure parameters and characteristics of the hyperfine magnetic interaction, as shown, the obtained powders inherit the phase composition of the cast alloy, but the formation of the b.c.c. phase, as well as simple and complex oxides after dispersion in ethanol and water, and dispersion in propanol also causes a change in the ratio $\gamma_{1}$ і $\gamma_{2}$ phases and the appearance of special carbides. The results are the basis for the development of a new method for obtaining highly dispersed and nanosized HEA powders.

Key words: high-entropy alloys, ultrafine powders, electric spark dispersion, Mössbauer spectroscopy, x-ray structural analysis, electron microscopy, magnetic measurements.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i09/1195.html

DOI: https://doi.org/10.15407/mfint.44.09.1195

PACS: 61.05.cp, 61.43.Gt, 64.70.kd, 68.37.Hk, 75.50.Cc, 81.07.Wx

Citation: V. M. Nadutov, A. O. Perekos, Ye. O. Svystunov, D. L. Vashchuk, V. Z. Voynash, and S. Yu. Makarenko, Mössbauer and Magnetic Studies of Ultrafine Powders of the FeNiCrCoCu System Produced by Electric Spark Method in Different Liquid Media, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1195—1211 (2022) (in Ukrainian)


REFERENCES
  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater., 6: 299 (2004). Crossref
  2. C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shun, Metall. Mater. Trans., 35A: 1465 (2004). Crossref
  3. J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Metall. Mater. Trans., 35A: 2533 (2004). Crossref
  4. C. J. Tong, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, Metall. Mater. Trans., 36A: 881 (2005). Crossref
  5. C. J. Tong, M. R. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun, and S. Y. Chang, Metall. Mater. Trans., 36A: 1263 (2005). Crossref
  6. M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. P. Tu, Mater. Trans., 47: 1395 (2006). Crossref
  7. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, Acta Mater., 59: 182 (2011). Crossref
  8. S. Varalakshmi, M. Kamaraj, and B. S. Murty, J. Alloys Compd., 460: 253 (2008). Crossref
  9. Y. L. Chen, Y. H. Hu, C. A. Hsieh, J. W. Yeh, and S. K. Chen, J. Alloys Compd., 481: 768 (2009). Crossref
  10. Y. L. Chen, Y. H. Hu, C. W. Tsai, C. A. Hsieh, S. W. Kao, J. W. Yeh, T. S. Chin, and S. K. Chen, J. Alloys Compd., 477: 696 (2009). Crossref
  11. Y. L. Chen, Y. H. Hu, C. W. Tsai, J. W. Yeh, S. K. Chen, and S. Y. Chang, Mater. Chem. Phys., 118: 354 (2009). Crossref
  12. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B. S. Murty, J. Mater. Sci., 45: 5158 (2010). Crossref
  13. K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, S. W. Lee, and K. Niihara, J. Alloys Compd., 495: 33 (2010). Crossref
  14. C. D. Gomez-Esparza, R. A. Ochoa-Gamboa, I. Estrada-Guel, J. G. Cabanas-Morena, J. I. Barajas-Villarruel, A. Arizmendi-Morquecho, J. M. Herrera-Ramirez, and R. Martinez-Sanchez, J. Alloys Compd., 509: S279 (2011). Crossref
  15. Y. Zhang and Y. J. Zhou, Mater. Sci. Forum, 561-565: 1337 (2007). Crossref
  16. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008). Crossref
  17. S. Praveen, B. S. Murty, and Ravi S. Kottada, Mater. Sci. Eng. A, 534: 83 (2012). Crossref
  18. T. Nagase, Ph. D. Rack, J. H. Noh, and T. Egami, Intermetall., 59: 32 (2015). Crossref
  19. K. V. Chuistov, A. P.Shpak, A. E. Perekos, A. D. Rud, and V. N. Uvarov, Uspekhi Fiziki Metallov, 4, No. 4: 235 (2003) (in Russian). Crossref
  20. W. F. I. David, J. Appl. Crystall., 19: 63 (1986). Crossref
  21. D. G. Rancourt, Nucl. Instrum. Meth. B, 44: 199 (1989). Crossref
  22. V. V. Ovchinnikov, Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys (Cambridge: Cambridge International Science Publishing: 2006).
  23. Ch. W. Tsai, Y. L. Chen, M. H. Tsai, J. W. Yeh, T. Ts. Shun, and Sw. K. Chen, J. Alloys Compd., 486: 427 (2009). Crossref
  24. V. M. Nadutov, S. Yu. Makarenko, and Ye. O. Svystunov, Metallofiz. Noveishie Tekhnol., 37, No. 7: 987 (2015). Crossref
  25. No. 060694 V Bazi Danykh Poroshkovoyi Dyfraktsiyi u Formati PDF-2 (in Ukrainian). http://www.icdd.com
  26. N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P. K. Liaw, and N. Tsuji, Metall. Mater. Trans., 46A: 1481 (2015). Crossref
  27. N. H. Tariq, M. Naeem, B. A. Hasan, J. A. Akhter, and M. Siddique, J. Alloys Compd., 556: 79 (2013). Crossref
  28. V. M. Nadutov, Ye. O. Svystunov, T. V. Efimova, and A. V. Gorbatov, Material Research in Atomic Scale by Mössbauer Spectroscopy, NATO Science Series, Math. Phys. Chem. (Eds. M. Mashlan, M. Miglierini, and P. Schaaf) 94: 105 (2003). Crossref
  29. V. P. Zalutskiy, E. A. Klindukhov, N. S. Kobzenko, V. I. Patoka, A. E. Perekos, and K. V. Chuistov, Metalolfizika, 13, No. 12: 35 (1991) (in Russian).
  30. K. V. Chuistov, A. E. Perekos, T. V.Efimova, T. V. Ruzhitskaya, V. P. Zalutskiy, and V. A. Melnikova, Metallofiz. Noveishie Technol., 21, No. 7: 3 (1999) (in Russian).