Characteristics of Josephson Nb/Al/AlO$_{x}$/Nb Contacts Formed by Simplified Method

A. A. Kalenyuk$^{1,2}$, A. P. Shapovalov$^{1,2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.02.2022; final version - 11.08.2022. Download: PDF

The Josephson junctions are widely used as the main elements in various sensitive devices, such as SQUIDs, qubits, and digital superconducting appliances. Therefore, the development of technology for the large-scale fabrication of such junctions is an urgent problem of modern microelectronics. The main requirements for the technology are simplicity of its implementation, repeatability, and stability of transition characteristics. The paper presents two simplified CMOS-like technologies for manufacturing thin film niobium Josephson junctions with an aluminium oxide dielectric layer, which are implemented without the use of expensive precision etching systems. As shown, a high-quality Josephson junction can be formed even when the vacuum between deposition of the first niobium layer and the subsequent aluminium layer is violated. It was found that the use of an additional SiO$_{2}$ insulating layer with a window at the junction point excludes the direct current flow between the upper and lower niobium electrodes at the junction edges and thus allows completely exclude the laborious process of the edge anodizing. The revealed Shapiro steps on the current-voltage characteristics and suppression of the critical current by a small magnetic field of 7 mT parallel to the junction plane confirm the high quality of the fabricated Josephson junctions. The obtained temperature dependence of the superconducting gap is in a good agreement with the BCS model that indicates formation of the conventional $SIS$ type junction. Temperature dependences of the critical current and resistive transition of fabricated junctions are also obtained. From these dependencies, it follows that the critical temperatures of the upper and lower electrodes are unequal that can be explained by a significant difference in their thicknesses. From the carried-out measurements, the calculations of the McCumber–Stewart parameter, capacitance, normal resistance values, and also the dielectric layer thickness in the junction were performed. The developed technologies can be used for the large-scale production of $SIS$ Josephson junctions for applications in modern microelectronics.

Key words: Josephson junction, BCS theory, Shapiro steps, niobium, energy gap.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i10/1239.html

DOI: https://doi.org/10.15407/mfint.44.10.1239

PACS: 73.50.-h, 74.25.fc, 74.25.Ha, 74.50.+r, 74.55.+v, 85.25.Cp

Citation: A. A. Kalenyuk and A. P. Shapovalov, Characteristics of Josephson Nb/Al/AlO$_{x}$/Nb Contacts Formed by Simplified Method, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1239—1253 (2022) (in Ukrainian)


REFERENCES
  1. S. K. Tolpygo, Low Temp. Phys., 42, No. 5: 361 (2016). Crossref
  2. S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. Kim, J. Bokor, C. Hu, A. Javey, H. S. Wong, and A. Javey, Science, 354, No. 6308: 99 (2016). Crossref
  3. M. Ito, K. Kawasaki, N. Yoshikawa, A. Fujimaki, H. Terai, and S. Yorozu, IEEE Trans. Appl. Supercond., 15, No. 2: 255 (2005). Crossref
  4. A. M. Klushin, J. Lesueur, Marian Kampik, F. Raso, A. Sosso, S. Khorshev, N. Bergeal, F. Couedo, Ch. Feuillet-Palma, P. Durandetto, Michał Grzenik, Krzysztof Kubiczek, Krzysztof Musioł, and Artur Skórkowski, IEEE Instrumentation & Measurement Magazine, 23, No. 2: 4 (2020). Crossref
  5. R. Cattaneo, E. A. Borodianskyi, A. A. Kalenyuk, and V. M. Krasnov, Phys. Rev. Applied, 16, No. 6: L061001 (2021). Crossref
  6. Mikhail M. Krasnov, Natalia D. Novikova, Roger Cattaneo, Alexey A. Kalenyuk, and Vladimir M. Krasnov, Beilstein Journal of Nanotechnology, 12: 1392 (2021). Crossref
  7. Taras Golod, Razmik A. Hovhannisyan, Olena M. Kapran, Vyacheslav V. Dremov, Vasily S. Stolyarov, and Vladimir M. Krasnov, Nano Letters, 21, No. 12: 5240 (2021). Crossref
  8. F. Arute, K. Arya, R. Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis, Nature, 574: 505 (2019). Crossref
  9. A. A. Kalenyuk, E. A. Borodianskyi, A. A. Kordyuk, and V. M. Krasnov, Phys. Rev. B, 103, No. 21: 214507 (2021). Crossref
  10. M. Hidaka, S. Nagasawa, K. Hinode, and T. Satoh, IEEE Trans. Appl. Supercond., 23, No. 3: 1100906 (2013). Crossref
  11. M. Gurvitch, M. A. Washingoton, and H. A. Huggins, Appl. Phys. Lett., 42, No. 5: 472 (1983). Crossref
  12. A. Kalenyuk, A. Shapovalov, V. Shnyrkov, V. Shaternik, M. Belogolovskii, P. Febvre, F. Schmidl, and P. Seidel, J. Phys.: Conference Series, 1559, No. 1: 012005 (2019). Crossref
  13. A. A. Kalenyuk, T. Golod, A. P. Shapovalov, A. L. Kasatkin, and S. I. Futimsky, 2020 IEEE Ukrainian Microwave Week (UkrMW), 743 (2020). Crossref
  14. A. A. Kalenyuk, A. Pagliero, E. A. Borodianskyi, S. Aswartham, S. Wurmehl, B. Büchner, D. A. Chareev, A. A. Kordyuk, and V. M. Krasnov, Phys. Rev. B, 96, No.13: 134512 (2017). Crossref
  15. A. Zeinali, T. Golod, and V. M. Krasnov, Phys. Rev. B, 94, No.21: 214506 (2016). Crossref
  16. K. K. Likharev, Dynamics of Josephson Junctions and Circuits (New York: Gordon and Breach Science Publishers: 1986).
  17. M. Belogolovskii, E. Zhitlukhina, V. Lacquaniti, N. De Leo, M. Fretto, and A. Sosso, Low Temp. Phys., 43, No. 7: 756 (2017). Crossref
  18. A. I. Braginski, J. Supercond. Nov. Magn., 32, No. 1: 23 (2019). Crossref