Titanium-Based Layered Armour Elements Manufactured with 3$D$-Printing Approach

P. E. Markovsky$^{1}$, O. M. Ivasishin$^{1}$, D. G. Savvakin$^{1}$, O. O. Stasiuk$^{1}$, V. I. Bondarchuk$^{1}$, D. V. Oryshych$^{1}$, D. V. Kovalchuk$^{2}$, S. H. Sedov$^{3}$, V. A. Golub$^{3}$, V. V. Buznytskyi$^{3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$JSC ‘NVO Chervona Hvylia’, 28 Dubrovytska Str., UA-04114 Kyiv, Ukraine
$^{3}$The National Defence University of Ukraine named after Ivan Chernyakhovskyi, 28 Povitroflotskyi Ave., UA-03049 Kyiv, Ukraine

Received: 19.07.2022; final version - 16.08.2022. Download: PDF

Triple layer titanium-based plate consisted of Ti–6Al–4V and CP–Ti layers 3$D$-printed on T110 substrate was tested for antiballistic protection. Microstructure after ballistic testing, hardness and three-point flexure characteristics of the layered material were studied and analysed. Interfaces between layers are important structure features contributing antiballistic protection characteristics. 3$D$-printed layers demonstrated sufficient bonding without porosity and other defects at interfaces, which resulted in promising antiballistic protection against high-energy B32 projectiles. Difference in microstructure, strength, hardness and ductile properties of individual layers resulted in noticeable variation of mechanical behaviour of layered materials depending on direction of applied force giving potential for further improvement of protecting characteristics.

Key words: titanium alloys, 3$D$-printing, multilayer materials, microstructure, armour, ballistic resistance, mechanical characteristics.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i10/1361.html

DOI: https://doi.org/10.15407/mfint.44.10.1361

PACS: 61.72.-y, 81.05.Bx, 81.05.Mh, 81.20.Ev, 81.40.-z, 81.70.-q

Citation: P. E. Markovsky, O. M. Ivasishin, D. G. Savvakin, O. O. Stasiuk, V. I. Bondarchuk, D. V. Oryshych, D. V. Kovalchuk, S. H. Sedov, V. A. Golub, and V. V. Buznytskyi, Titanium-Based Layered Armour Elements Manufactured with 3$D$-Printing Approach, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1361—1375 (2022)

  1. G. Lutjering and J. C. Williams, Titanium (Berlin: Springer: 2007). Crossref
  2. M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens, Adv. Engineering Mater., 5, Iss. 6: 419 (2003). Crossref
  3. T. L. Jones, K. Kondoh, T. Mimoto, N. Nakanishi, and J. Umeda, Key Engineering Materials, 551: 118 (2013). Crossref
  4. J. S. Montgomery and M. G. H. Wells, JOM, 4: 29 (2001). Crossref
  5. J. A. Zukas and D. R. Scheffler, Int. J. Solids Structures, 38: 3321 (2001). Crossref
  6. N. K. Gupta and V. Madlu, Int. J. Impact Eng., 19: 395 (1997). Crossref
  7. J. K. Lee, Analysis of Multi-Layered Materials under High Velocity Impact Using CTH (Thesis of Disser. for Master Sci. in Aeronautical Engineering), 2685 (2008).
  8. O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, V. A. Golub, V. I. Mirnenko, S. H. Sedov, V. A. Kurban, and S. L. Antonyuk, Usp. Fiz. Met., 20, No. 2: 285 (2019). Crossref
  9. P. E. Markovsky, D. G. Savvakin, S. V. Prikhodko, O. O. Stasyuk, S. H. Sedov, V. A. Golub, V. A. Kurban, and E. V. Stecenko, Metallofiz. Noveishie Technol., 42, No. 11: 1509 (2020). Crossref
  10. P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, S. H. Sedov, V. A. Golub, D. V. Kovalchuk, and S. V. Prikhodko, Metallofiz. Noveishie Technol., 43, No. 12: 1573 (2021). Crossref
  11. Wohlers Report 2018. 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report.
  12. J. A. Harris, R. E. Winter, and G. J. McShane, Int. J. Impact Eng., 104: 177 (2017). Crossref
  13. S. E. Alkhatib and T. B. Sercombe, Mater. Design, 217: 110664 (2022). Crossref
  14. Sh. Liu and Y. C. Shin, Mater. Design, 164: 107552 (2019). Crossref
  15. Donghong Ding, Bintao Wu, Zengxi Pan, Zhijun Qiu, and Huijun Li, Mater. Manufacturing Processes, 35, Iss. 7: 845 (2020). Crossref
  16. Jake Benzing, Nik Hrabe, Timothy Quinn, Ryan White, Ross Rentz, and Magnus Ahlfors, Mater. Lett., 257: 126690 (2019). Crossref
  17. D. V. Kovalchuk, V. I. Melnik, I. V. Melnik, and B. A. Tugai, Avtomatychne Zvaryuvannya [Automatic Welding], No. 12: 26 (2017) (in Russian). Crossref
  18. O. M. Ivasishin and D. V. Kovalchuk, Additive Manufacturing for the Aerospace Industry. Chapter 12 (Eds. F. Froes and R. Boyer) (Elsevier: 2019).
  19. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30(7): 5307 (2021). Crossref