On the Nature of Positive Hydrogen and Nitrogen Effects on Fatigue of Austenitic Steels

V. G. Gavriljuk, V. M. Shyvaniuk, S. M. Teus

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 16.08.2022; final version - 23.09.2022. Download: PDF

The hydrogen and nitrogen effects on fatigue life of austenitic steels are discussed using the ab initio calculations of electron structure, analysis of atomic distribution and dislocation substructure. As shown, both elements increase the concentration of free electrons in the f.c.c. iron softening thereby the crystal lattice, decreasing specific energy of dislocations and increasing their mobility. As a result, the dominant occurrence of short-range atomic order in the metal solid solutions causes localization of plastic deformation and consequent formation of dislocation slip bands. A combination of these factors realizes in the localized reversible planar slip of dislocations, which prevents their intersection with nucleation of submicrocracks and decreases the crack growth rate during fatigue tests, i.e., prolongs the fatigue life.

Key words: austenitic steel, fatigue life, hydrogen, nitrogen, interatomic interactions, dis-locations.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i11/1395.html

DOI: https://doi.org/10.15407/mfint.44.11.1395

PACS: 36.40.Cg, 61.43.-j, 61.72.Ff, 61.72.Hh, 61.72.Lk, 64.70.kd, 75.50.Bb

Citation: V. G. Gavriljuk, V. M. Shyvaniuk, and S. M. Teus, On the Nature of Positive Hydrogen and Nitrogen Effects on Fatigue of Austenitic Steels, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1395—1405 (2022)


REFERENCES
  1. Y. Murakami, T. Kanezaki, and Y. Mine, Metall. Mater. Trans. A, 41: 2548 (2010). Crossref
  2. D. G. Ulmer and C. J. Altstetter, Acta Metall. Mater., 39: 1237 (1991). Crossref
  3. S. Asano and R. Otsuka, Scr. Mater., 10: 1015 (1976). Crossref
  4. D. P. Abraham and C. J. Altstetter, Metall. Mater. Trans. A, 26: 2849 (1995). Crossref
  5. C. San Marchi, Intern. J. Hydrogen Energy, 33: 889 (2008). Crossref
  6. G. S. Mogilny, S. M. Teus, V. N. Shyvanyuk, and V. G. Gavriljuk, Mat. Sci. Eng. A, 648: 260 (2015). Crossref
  7. G. S. Mogilny, V. N. Shyvaniuk, S. M. Teus, L. M. Ivaskevich, and V. G. Gavriljuk, Acta Mater., 194: 516 (2020). Crossref
  8. Y. Zhao, M.-Y. Seoka, I.-C. Choia,Y.-H. Leeb, S.-J. Parkc, U. Ramamurtyde, J.-Y. Sunf, and J-Il Janga, Scr. Mater., 107: 46 (2015). Crossref
  9. R. Kirchheim, Scr. Mater., 67: 767 (2012). Crossref
  10. S. Taketomi, R. Matsumoto, and N. Miyazaki, J. Mater. Sci., 43: 1166 (2008). Crossref
  11. S. Wang, N. Hashimoto, and S. Ohnuki, Sci. Reports, 3: Article Number: 2760 (2013). Crossref
  12. A. Seeger, physica status solidi (a), 55: 457 (1979). Crossref
  13. A. Zielinski, G. Hauptmann, U. Holzwarth, and H. Kronmüller, Z. Metallkd., 87: 104 (1996). Crossref
  14. C. B. Carter and S. M. Holmes, Philos. Mag., 35: 1161 (1977). Crossref
  15. A. Seeger, Philos. Mag., 45: 771 (1954). Crossref
  16. A. Seeger, Philos. Mag., 46: 1194 (1955). Crossref
  17. B. Obst and A. Nyilas, Mat. Sci. Eng. A, 137: 141 (1991). Crossref
  18. A. Nyilas, B. Obst, and H. Nakajima, High Nitrogen Steels, HNS 93 (Eds. V. G. Gavriljuk and V. M. Nadutov) (Kiev: Institute for Metal Physics: 1995), p. 339.
  19. V. G. Gavriljuk, A. L. Sozinov, J. Foct, Yu. N. Petrov, and Yu. A. Polushkin, Acta Mater., 46: 1157 (1998). Crossref
  20. B. Obst, Handbook of Applied Superconductivity (Ed. B. Seeger) (Philadelphia, Bristol: Institute of Physics Publishing: 1998), p. 969. Crossref
  21. H. Margolin, Y. Mahajan, and Y. Saleh, Scr. Metall., 10: 1115 (1976). Crossref
  22. V. G. Gavriljuk, A. I. Tyshchenko, V. V. Bliznuk, I. L. Yakovleva, S. Riedner, and H. Berns, Steel Res. Intern., 79: 413 (2008). Crossref
  23. R. L. Tobler and R. P. Reed, J. Testing Evaluation, 12: 364 (1984). Crossref
  24. J. B. Vogt, J. Foct, C. Regnard, G. Robert, and J. Dhers, Metall. Trans. A, 22: 2385 (1991). Crossref
  25. R. Taillard and J. Foct, High Nitrogen Steels, HNS 88 (Eds. J. Foct and A. Hendry) (London: The Institute of Metals: 1989), p. 387.
  26. S. Degallaix, J. I. Dickson, and J. Foct, High Nitrogen Steels, HNS 88 (Eds. J. Foct and A. Hendry) (London: Institute of Metals: 1989), p. 380.
  27. V. G. Gavriljuk, V. M. Shyvaniuk, and S. M. Teus, Hydrogen in Engineering Metallic Materials (Springer Nature Switzerland AG: 2022), p. 26. Crossref
  28. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Corros. Rev., 31, No. 2: 33 (2013). Crossref
  29. B. D. Shanina,V. G. Gavriljuk, S. P. Kolesnik, and V. N. Shivanyuk, J. Phys. D: Appl. Phys., 32: 298 (1999). Crossref
  30. V. G. Gavriljuk, S. P. Efimenko, Ye. E. Smuk, S. Yu. Smuk, B. D. Shanina, N. P. Baran, and V. M. Maximenko, Phys. Rev. B, 48: 3224 (1993). Crossref
  31. V. G. Gavriljuk, V. N. Shivanyuk, and B. D. Shanina, Acta Mater., 53: 5017 (2005). Crossref
  32. V. G. Gavriljuk, V. N. Shyvaniuk, and S. M. Teus, Internal Friction and Mechanical Spectroscopy (IFMS-19) (Eds. Igor S. Golovin and Francesco Cordero) J. Alloys Compd., Special Issue ICIFMS-19: Article 161260 (2021). Crossref
  33. A. E. Pontini and J. D. Hermida, Scr. Mater., 37: 1831 (1997). Crossref
  34. P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum, Mater. Sci. Forum, 207, Iss. 209: 207 (1996). Crossref
  35. V. Gerold and H. P. Karnthaler, Acta Metall., 37: 2177 (1989). Crossref
  36. V. G. Gavriljuk, V. M. Shyvaniuk, and S. M. Teus, Hydrogen in Engineering Metallic Materials (Springer: 2022), p. 255. Crossref
  37. V. G. Gavriljuk, B. D. Shanina, and H. Berns, Acta Mater., 48: 3879 (2000). Crossref
  38. J. E. Epperson, P. Fürnrohr, and C. Ortiz, Acta Crystallogr., Section A, 34: 667 (1978). Crossref