Surface Hardening of Ti6Al4V Alloy Using High-Frequency Mechanical Impacts

A. P. Burmak$^{1}$, S. M. Voloshko$^{1}$, B. M. Mordyuk$^{1,2}$, T. A. Krasovskyi$^{3}$, V. I. Zakiev$^{1,4}$, I. A. Vladymyrskyi$^{1}$, M. A. Vasylyev$^{2}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{4}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine

Received: 15.08.2022; final version - 12.09.2022. Download: PDF

A comparison of the effects of high-frequency hardening by balls (SMAT) and local high-frequency mechanical impact (HFMI) treatment by an impact element on the micromechanical characteristics and microstructure-phase state of the surface of the Ti6Al4V (ВТ6) alloy is carried out. The SMAT processing of the sample surface is carried out in the air for 30–240 s with steel balls of 2 mm in diameter, the movement of which was induced by an ultrasonic sonotrode oscillating at a frequency of $\cong$ 20 kHz. The results are compared with the HFMI processing by cylindrical steel striker of 5 mm in diameter under comparable time regimes. The mechanical characteristics are determined based on the instrumental indentation data, and the microstructure parameters and the presence of the oxide phases on the surface are determined by x-ray diffraction analysis. The features of the microhardness changes and XRD based data regarding the macrostresses, crystallite size, and microstructure-phase state after high-frequency impact treatments of various ultrasonic excitations are established.

Key words: surface mechanical attrition treatment, high-frequency mechanical impact, surface, residual stress, microhardness, phase composition.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i11/1453.html

DOI: https://doi.org/10.15407/mfint.44.11.1453

PACS: 43.35.+d, 61.72.Ff, 81.65.-b, 83.10.Tv, 85.40.-e

Citation: A. P. Burmak, S. M. Voloshko, B. M. Mordyuk, T. A. Krasovskyi, V. I. Zakiev, I. A. Vladymyrskyi, and M. A. Vasylyev, Surface Hardening of Ti6Al4V Alloy Using High-Frequency Mechanical Impacts, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1453—1474 (2022) (in Ukrainian)


REFERENCES
  1. R. Liu, S. Yuan, N. M. Lin, Q. F. Zeng, Z. H. Wang, and Y. C. Wu, J. Mater. Res. Technol., 11: 351 (2021). Crossref
  2. R. R. Boyer, Mater. Sci. Eng., 213, Iss. 1-2: 103 (1996). Crossref
  3. O. Schauerte, Adv. Eng. Mater., 5, Iss. 6: 411 (2003). Crossref
  4. R. W. Schutz, C. F. Baxter, P. L. Boster, and F. H. Fores, JOM, 53: 33 (2001). Crossref
  5. J. Cheng, F. Li, S. G. Zhu, Y. Yu, Z. H. Qiao, and J. Yang, Tribol. Int., 115: 483 (2017). Crossref
  6. L. Luo, Z. Y. Jiang, D. B. Wei, and X. F. He, Adv. Mater. Res., 887-888: 1115 (2014). Crossref
  7. A. T. Sidambe, Materials, 7, Iss. 12: 8168 (2014). Crossref
  8. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mat. Sci. Eng. A, 243: 244 (1998). Crossref
  9. K. G. Budinski, Wear, 151, Iss. 2: 203 (1991). Crossref
  10. A. Molinari, G. Straffelini, B. Tesi, and T. Bacci, Wear, 208, Iss. 1-2: 105 (1997). Crossref
  11. D. Banerjee and J. C. Williams, Acta. Mater., 61, Iss. 3: 844 (2013). Crossref
  12. M. Wen, C. Wen, P. Hodgson, and Y. C. Li, Colloids and Surfaces B: Biointerfaces, 116: 658 (2014). Crossref
  13. X. H. Zhang and D. X. Liu, Int. J. Fatigue, 31, Iss. 5: 889 (2009). Crossref
  14. L. Wagner, Mater. Sci. Eng. A, 263: 210 (1999). Crossref
  15. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A, 641: 348 (2015). Crossref
  16. L. Benea, E. Mardare-Danaila, and J.-P. Celis, Tribol. Int., 78: 168 (2014). Crossref
  17. M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, and T. Ishikawa, Usp. Fiz. Met., 17, Iss. 3: 209 (2016). Crossref
  18. B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and V. V. Mohylko, J. Mater. Eng. Perform., 30: 1780 (2021). Crossref
  19. A. P. Zhilyaev and T. G. Langdon, Progress Mater. Sci., 53: 893 (2008). Crossref
  20. R. Z. Valiev and T. G. Langdon, Progress Mater. Sci., 51: 881 (2006). Crossref
  21. H. Chan, Development of Surface Mechanical Attrition Treatment (SMAT) and Electrodeposition Process for Generating Nanostructured Materials and Study of their Tensile Properties (Hong Kong: The Hong Kong Polytechnic University: 2010).
  22. H. Glaiter, Acta Mater., 48: 1 (2000). Crossref
  23. A. A. Mazilkin, B. B. Straumal, and S. G. Protasova, Fizika Tverdogo Tela, 49: 824 (2007) (in Russian). Crossref
  24. K. Lu and J. J. Lu, Mater. Sci. Technol., 15, Iss. 03: 193 (1999).
  25. K. Lu and J. Lu, Mater. Sci. Eng. A, 375-377: 38 (2004). Crossref
  26. Y. S. Zhang, Z. Han, K. Wang, and K. Lu, Wear, 260: 942 (2006). Crossref
  27. A. Amanov and Y.-S. Pyun, Surf. Coat. Technol., 326: 343 (2017). Crossref
  28. A. Amanov, I.-S. Cho, D.-E. Kim, and Y.-S. Pyun, Surf. Coat. Technol., 207: 135 (2012). Crossref
  29. X. Y. Cao, P. Zhu, W. Wang, T. G. Liu, Y. H. Lu, and T. Shoji, Mater. Characterization, 137: 77 (2018). Crossref
  30. M. O. Vasyl'yev, B. M. Mordyuk, H. I. Prokopenko, S. M. Voloshko, L. F. Yatsenko, and N. I. Khripta, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1029 (2018) (in Ukrainian). Crossref
  31. N. R. Tao, H. W. Zhang, J. Lu, and K. Lu, Mater. Trans., 44, Iss. 10: 1919 (2003). Crossref
  32. M. O. Vasiliev, G. I. Prokopenko, and V. S. Filatova, Usp. Fiz. Met., 5, Iss. 3: 345 (2004) (in Russian). Crossref
  33. S. I. Sydorenko, M. O. Vasyl'yev, and S. M. Voloshko, Nauka pro Materialy: Dosyahnennya ta Perspektyvy [Materials Science: Achievements and Prospects] (Ed. L. M. Lobanov) (Kyiv: Akademperiodyka: 2018), vol. 1, p. 295 (in Ukrainian).
  34. S. Alikhani Chamgordanis, R. Miresmaeili, and M. Aliofkhazraei, Tribology Int., 119: 744 (2018). Crossref
  35. S. Anand Kuma, S. Ganesh Sundara Raman, and T. S. N. Sankara Narayanan, Trans. Indian Inst. Met., 67: 137 (2014). Crossref
  36. S. B. Fard and M. Guagliano, Frattura ed Integrità Strutturale, 7: 3 (2009). Crossref
  37. J. W. Tian, J. C. Villegas, W. Yuan, D. Fielden, L. Shaw, P. K. Liaw, and D. L. Klarstrom, Mater. Sci. Eng. A, 468-470: 164 (2007). Crossref
  38. Y. Chen, G. Wang, Y. Liu, L. Zhan, H. Diao, and Y. Wang, Metals, 12, Iss. 1: 94 (2022). Crossref
  39. Q. Yao, J. Sun, G. Zhang, W. Tong, and H. Zhang, Vacuum, 142: 45 (2017). Crossref
  40. Q. Zhang, B. B. Duan, Z. Q. Zhang, J. B. Wang, and C. R. Si, J. Mater. Res. Technol., 11: 1090 (2021). Crossref
  41. Y. Eyzat, M. Chemkhi, Q. Portella, J. Gardana, J. Remond, and D. Retraint, Procedia CIRP, 81: 1225 (2019). Crossref
  42. X. C. Yan, S. Yin, C. Y. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu, and M. Liu, Materials Research Letters, 7, Iss. 8: 327 (2019). Crossref
  43. D. Gallitelli, D. Retraint, and E. Rouhaud, Adv. Mater. Research, 996: 964 (2014). Crossref
  44. Y. G. Chabak, V. I. Fedun, K. Shimizu, V. G. Efremenko, and V. I. Zurnadzhy, Problems of Atomic Science and Technology. Series 'Plasma Electronics and New Acceleration Methods', 104, Iss. 4: 100 (2016).
  45. H. I. Prokopenko, B. M. Mordyuk, M. O. Vasyl'yev, and S. M. Voloshko, Fizychni Osnovy Ul'trazvukovoho Udarnoho Zmitsnennya Metalevykh Poverkhon' [Physical Principles for Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  46. R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park: 1994).
  47. V. I. Prykhodko, M. V. Vysokolyan, V. V. Volochai, G. I. Prokopenko, B. N. Mordyuk, V. T. Cherepin, T. A. Krasovskiy, and T. V. Popova, Science and Innovation, 10: 5 (2014). Crossref
  48. S. I. Derev'yanko, V. V. Morozovych, T. A. Krasovs'kyy, and Yu. O. Lyashenko, Visnyk Cherkas'koho Universytetu. Seriya Fizyko-Matematychni Nauky, 1: 60 (2019) (in Ukrainian).
  49. I. Zakiev, M. Storchak, G. A. Gogotsi, V. Zakiev, and Y. Kokoieva, Ceramics International, 47, Iss. 21: 29638 (2021). Crossref
  50. I. Zakiev and E. Aznakayev, J. Association for Laboratory Automation, 7: 44 (2002). Crossref
  51. M. Storchak, I. Zakiev, V. Zakiev, and A. Manokhin, Measurement, 191: 110745 (2022). Crossref
  52. S. A. Firstov, S. R. Ignatovich, and I. M. Zakiev, Strength Mater., 41: 147 (2009). Crossref
  53. M. O. Vasyl'yev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019). Crossref
  54. A. M. Glezer and L. S. Metlov, Fizika Tverdogo Tela, 52: 1090 (2010) (in Russian). Crossref
  55. M. O. Vasyl'yev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1269 (2015) (in Ukrainian). Crossref
  56. S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, and C. Demangel, Surf. Coat. Technol., 224: 82 (2013). Crossref
  57. V. Tuninetti, A. F. Jaramillo, G. Riu, C. Rojas-Ulloa, A. Znaidi, C. Medina, A. M. Mateo, and J. J. Roa, Metals, 11: 104 (2021). Crossref
  58. R. K. Nalla, I. Altenberger, U. Noster, G. Y. Liu, B. Scholtes, and R. O. Ritchie, Mater. Sci. Eng. A, 355: 216 (2003). Crossref
  59. B. N. Mordyuk, A. I. Dekhtyar, D. G. Savvakin, and N. I. Khripta, J. Mater. Eng. Perform., 31: 5668 (2022). Crossref
  60. B. N. Mordyuk, O. P. Karasevskaya, G. I. Prokopenko, and N. I. Khripta, Surf. Coat. Technol., 210: 54 (2012). Crossref
  61. Y. G. Liu and M. Q. Li, Mater. Sci. Eng. A, 745: 291 (2019). Crossref