Development Directed Choice System of the Most Efficient Technology for Improving Sliding Bearings Babbitt Covers Quality. Pt. 1. Peculiarities of Babbitt Coating Technologies

V. B. Tarelnyk$^{1}$, O. P. Gaponova$^{2}$, Ie. V. Konoplianchenko$^{1}$, N. V. Tarelnyk$^{1}$, M. Y. Dumanchuk$^{1}$, M. O. Mikulina$^{1}$, V. O. Pirogov$^{1}$, S. O. Gorovoy$^{1}$, N. K. Medvedchuk$^{3}$

$^{1}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{2}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{3}$Khmelnytskyi National University, 11 Instytutska Str., UA-29016 Khmelnytskyi, Ukraine

Received: 08.08.2022; final version - 12.09.2022. Download: PDF

The article substantiates the importance and relevance of increasing problem of the performance and service life of babbitt sliding bearings (SB), which are the rotors supports of a large number of centrifugal pumps, compressors, turbines and other dynamic equipment operating at high operating parameters (speeds, loads and temperatures), as well as in conditions of corrosive, abrasive and other types of working environment’s influence. The analysis of the babbitt SBs production technology and operating conditions showed that the reason for the decrease in their durability are factors that are formed both at the stage of manufacture and during operation. SB failure under normal operating conditions is a consequence of wear various types: cavitation, abrasive wear, damage due to plastic deformations, fatigue damage, etc. The antifriction layer wear resistance depends on the mode of operation and design of the bearing, the physical properties of the connection between the layer and the base, the rigidity of the shaft and the bed under the bearings. As established, the bearing anti-friction layer quality must be evaluated according to the following criteria: adhesion strength of the coating to the base, cohesive strength of the anti-friction layer, porosity, and homogeneity of the structure. As established, during the production of SBs, the formation by the method of electrospark alloying (ESA) of a copper intermediate layer, firmly bonded with steel substrate, and tin layer (formation of solid substitution solutions) and babbitt provides a stronger (by 35%) of adhesion, compared to traditional technology (steel 20 + babbitt), steel substrate with babbitt, as well as more intensive removal of heat from the friction zone. As determined, a new technology in which all operations are carried out by the ESA method can be a reserve for improving the babbitt coatings formation quality, which significantly affects the durability of the SB. As determined, in order to determine a more rational technology for applying babbitt coatings, it is necessary to develop a physically based mathematical model that relates the wear of a certain amount of babbitt to the frictional work spent on it.

Key words: sliding bearing, babbitt, coating, wear, structure, transition layer, adhesion strength, electrospark alloying, mathematical model.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i11/1475.html

DOI: https://doi.org/10.15407/mfint.44.11.1475

PACS: 46.32.+x, 46.35.+z, 46.50.+a, 46.55.+d, 61.72.Qq, 61.82.Bg

Citation: V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, M. Y. Dumanchuk, M. O. Mikulina, V. O. Pirogov, S. O. Gorovoy, and N. K. Medvedchuk, Development Directed Choice System of the Most Efficient Technology for Improving Sliding Bearings Babbitt Covers Quality. Pt. 1. Peculiarities of Babbitt Coating Technologies, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1475—1493 (2022) (in Ukrainian)


REFERENCES
  1. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 157 (2012). Crossref
  2. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 148 (2012). Crossref
  3. I. Pavlenko, V. Simonovskiy, V. Ivanov, J. Zajac, and J. Pitel (Eds. V. Ivanov et al.) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering (Springer, Cham.: 2019), p. 325. Crossref
  4. E. A. Petrovsky, K. A. Bashmur, Yu. N. Shadchina, V. V. Bukhtoyarov, and V. S. Tynchenko, J. Phys.: Conf. Ser., 1399: 055032 (2019). Crossref
  5. V. B. Tarel'nik, V. S. Martsinkovskii, and V. I. Yurko, Chem. Petrol. Eng., 51: 328 (2015). Crossref
  6. V. B. Tarel'nik, V. S. Martsinkovskii, and V. I. Yurko, Chem. Petrol. Eng., 51: 402 (2015). Crossref
  7. V. Yurko and V. Martsynkovskyy, Appl. Mech. Mater., 630: 356 (2014). Crossref
  8. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 114 (2017). Crossref
  9. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 266 (2017). Crossref
  10. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 385 (2017). Crossref
  11. A. Zahorulko, Eastern European J. Enterprise Technol., 4, Iss. 7: 45 (2015).
  12. S. Blasiak and A. Zahorulko, Tribology International, 94: 126 (2016). Crossref
  13. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (Springer: 2020), p. 216. Crossref
  14. John Crane, Power Transmission Couplings. TLK Membrane Coupling for High Power Applications in the Process Industry.
  15. J. Yao, L. Chen, F. Liu, C. Yin, et al., International Conference on Advanced Vehicle Technologies and Integration (Chuangchun, People's Republic of China, July 16-19, 2012) (Beijing: China Machine Press: 2012), paper A003, p. 16.
  16. A. S. Kalinichenko, U. L. Basiniuk, and E. I. Mardasevich, Sci. Technique, 18, Iss. 3: 195 (2019). Crossref
  17. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and B. Antoshevskii, Surf. Eng. Appl. Electrochem., 53: 285 (2017). Crossref
  18. I. F. Santos, Mech. Ind., 12: 275 (2011). Crossref
  19. V. B. Tarel'nik, V. S. Marcinkovskij, and A. V. Pljakin, Sbornik Dokladov Uchastnikov Seminara 'JeKKON-11' H111 Mezhdunarodnoy Nauchno-Tekhnicheskoy Konferentsii 'HERVIKON-2011' (Sumy: 2011), p. 197 (in Russian).
  20. I. G. Galiahmetov, Konstrukcionnye Materialy Tsentrobezhnykh i Vintovykh Kompressorov. Vybor i Tehnologiya Ikh Primeneniya [Structural Materials of Centrifugal and Screw Compressors. The Choice and Technology of Their Application] (Kazan': Izd-vo 'FON': 2009) (in Russian).
  21. S. K. Pometun, Khimicheskaya Tekhnika, No. 4: 8 (2009) (in Russian).
  22. A. P. Lebedeva and T. N. Pogorelova, Vosstanovlenie Detaley Mashin [Restoration of Machine Parts] (Moscow: Mashinostroenie: 2003) (in Russian).
  23. N. P. Barykin and R. F. Fazlyahmetov, Kuznechno-Shtampovochnoe Proizvodstvo. Obrabotka Materialov Davleniem, 9: 27 (2006) (in Russian).
  24. DIMET-Novaja Tehnologiya Naneseniya Metallicheskikh Pokrytiy (OOO 'Obninskiy Centr Poroshkovogo Napyleniya) [DIMET-a New Technology for Applying Metal Coatings (LLC Obninsk Center for Powder Spraying)], Khimicheskaya Tekhnika, 5: 29 (2010) (in Russian).
  25. A. V. Segal', Tekhnologiya Proizvodstva Centrobezhnykh i Vintovykh Kompressorov i Holodil'nykh Mashin [Production Technology of Centrifugal and Screw Compressors and Refrigeration Machines] (Kazan': Izd-vo 'FON': 2009) (in Russian).
  26. S. O. Luzan, Mekhanika ta Mashynobuduvannya, 2: 211 (2011) (in Russian).
  27. E. D. Pleshka, Elektronnaya Obrabotka Materialov, 2: 17 (2008) (in Russian).
  28. V. I. Kuz'min, A. A. Mikhal'chenko, O. B. Kovalev, E. V. Kartaev and N. A. Rudenskaya, J. Therm. Spray Tech., 21: 159 (2012). Crossref
  29. A. D. Pogrebnjak, V. I. Ivashchenko, P. L. Skrynskyy, O. V. Bondar, P. Konarski, K. Zaleski, S. Jurga, and E. Coy, Composites Part B-Engineering, 142: 85 (2018). Crossref
  30. G. Morand, P. Chevallier, L. Bonilla-Gameros, S. Turgeon, M. Cloutier, M. Da Silva Pires, A. Sarkissian, M. Tatoulian, L. Houssiau, and D. Mantovani, Surface and Interface Analysis, 53, Iss.7: 658 (2021). Crossref
  31. G. Maistro, S. Kante, L. Nyborg, and Y. Cao, Surfaces and Interfaces, 24: 101093 (2021). Crossref
  32. B. Antoszewski, S. Tofil, M. Scendo, and W. Tarelnik, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012036 (2017). Crossref
  33. I. Pliszka and N. Radek, Procedia Engineering, 192: 707 (2017). Crossref
  34. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian). Crossref
  35. V. B. Tarelnyk, V. S. Martsynkovskyy, O. P. Gaponova, Ie. V. Konoplianchenko, M. Ya. Dovzyk, N. V. Tarelnyk, and S. A. Gorovoy, 15th Int. Sci. Eng. Conf. Hermetic Sealing, Vibration Reliability and Ecological Safety of Pump and Compressor Machinery, HERVICON+PUMPS (Sep. 5-8, 2017, Sumy), vol. 233, p. 012049. Crossref
  36. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, Ie. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, 15th Int. Sci. Eng. Conf. Hermetic Sealing, Vibration Reliability and Ecological Safety of Pump and Compressor Machinery, HERVICON+PUMPS (Sep. 5-8, 2017, Sumy), vol. 233, p. 012048. Crossref
  37. V. B. Tarelnyk, A. V. Paustovskii, Yu. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metall. Metal Ceramics, 55: 585 (2017). Crossref
  38. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, M. Dovzhyk, M. Dumanchuk, M. Goncharenko, B. Antoszewski, and O. Gaponova, 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP) (Sept. 9-14, 2018), p. 1.
  39. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, B. Antoszewski, Cz. Kundera, V. Martsynkovskyy, M. Dovzhyk, M. Dumanchuk, and O. Vasilenko, Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in Physics (Singapore: Springer: 2020), vol. 240, p. 195. Crossref
  40. D. N. Korotaev, Tekhnologicheskie Vozmozhnosti Formirovaniya Iznosostoikikh Nanostruktur Ektroiskrovym Legirovaniem [Technological Possibilities of Wear-Resistant Nanostructure Formation by Electric-Spark Alloying] (Omsk: SibADI: 2009) (in Russian).
  41. L. Ropyak and V. Ostapovych, Eastern-European J. Enterprise Technologies, 2, No. 5: 50 (2016). Crossref
  42. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022). Crossref
  43. L. Ya. Ropyak, M. V. Makoviichuk, I. P. Shatskyi, I. M. Pritula, L. O. Gryn, and V. O. Belyakovskyi, Func. Mater., 27, No. 3: 638 (2020).
  44. V. S. Marcinkovskij, V. B. Tarel'nik, and A. V. Dzjuba, Sposob Obrabotki Vkladyshey Podshipnikov Skol'zheniya [Processing Method for Plain Bearing Shells]: Patent 2598737 RF, MPK B23N 9/00 (2006. 01) (Bulletin 27) (2016) (in Russian).
  45. V. B. Tarel'nik, V. S. Marcinkovskij, and A. V. Belous, Visnyk Kharkivskoho Natsionalnoho Tekhnichnoho Universytetu Silskoho Hospodarstva Imeni Petra Vasylenka, 94: 102 (2010) (in Russian).