Electrophysical Properties of Composites Based on Hydrogenated Titanium with Different Contents of Thermally Expanded Graphite

H. Yu. Mykhailova$^{1}$, E. G. Len$^{1,2}$, M. M. Yakymchuk$^{1}$, V. A. Dekhtyarenko$^{1}$, I. Ye. Galstian$^{1}$, M. Ya. Shevchenko$^{1}$, O. Yu. Gerasymov$^{1}$, E. A. Tsapko$^{1}$, V. I. Patoka$^{1}$, M. O. Rud$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 10.10.2022. Download: PDF

The formation of carbon-containing composites based on metals opens the prospect of combining the advantages of their components and manifesting new electrophysical properties, which are not characteristic of the original materials. Mechanical synthesis of hydrogenated titanium (TiH) and thermally expanded graphite (TEG) powders leads to such composites formation. As shown, the increase by 1.65 and 6.3 times in their electrical conductivity is observed in comparison with original TiH and TEG components, respectively. It is due to an increase of free electrons in the TEG because of their transport from the metal component.

Key words: powder materials, composite, thermally expanded graphite, hydrogenated titanium, mechanical properties, electrical conductivity.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i11/1523.html

DOI: https://doi.org/10.15407/mfint.44.11.1523

PACS: 61.48.De, 62.23.Pq, 72.80.Tm, 72.80.Vp, 73.63.Fg, 81.07.De

Citation: H. Yu. Mykhailova, E. G. Len, M. M. Yakymchuk, V. A. Dekhtyarenko, I. Ye. Galstian, M. Ya. Shevchenko, O. Yu. Gerasymov, E. A. Tsapko, V. I. Patoka, and M. O. Rud, Electrophysical Properties of Composites Based on Hydrogenated Titanium with Different Contents of Thermally Expanded Graphite, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1523—1533 (2022)


REFERENCES
  1. F. Ma'Mari, T. Moorsom, G. Teobaldi et al., Nature, 524: 69 (2015). Crossref
  2. H. Yu. Mykhailova, E. G. Len, I. Ye. Galstyan, E. A. Tsapko, O. Yu. Gerasymov, V. I. Patoka, I. M. Sidorchenko, and M. M. Yakymchuk, Metallofiz. Noveishie Tekhnol., 42, No. 4: 575 (2020). Crossref
  3. L. Nadaraia, N. Jalabadze, L. Khundadze, L. Rurua, M. Japaridze, and R. Chedia, Diamond and Related Materials,114: 108319 (2021). Crossref
  4. X. Ji, S. Qi, R. Ahmed, and A. A. Rifat, Handbook of Graphene Set (Scrivener Publishing LLC: 2019), p. 27. Crossref
  5. L. Wang et al., Appl. Surf. Sci., 492: 272 (2019). Crossref
  6. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, and M. Setkiewicz, Sensors, 16(1): 103 (2016). Crossref
  7. A. I. Kachmar, V. M. Boichuk, I. M. Budzulyak, V. O. Kotsyubynsky, B. I. Rachiy, and R. P. Lisovskiy, Fullerenes, Nanotubes and Carbon Nanostructures, 27, Iss. 9: 669 (2019). Crossref
  8. M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Carbon, 38(2): 183 (2000). Crossref
  9. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, C. Wang, Nature Communications, 5(1): 1 (2014). Crossref
  10. P. Murugan, R. D. Nagarajan, B. H. Shetty, M. Govindasamy, and A. K. Sundramoorthy, Nanoscale Adv., 3: 6294 (2021). Crossref
  11. Yang Wen, Kai He, Yujie Zhu, Fudong Han, Yunhua Xu, Isamu Matsuda, Yoshitaka Ishii, John Cumings, and Chunsheng Wang, Nature Communications, 5: 4033 (2014). Crossref
  12. Le Li, W. Zhang, W. Pan, M. Wang, H. Zhang, D. Zhang, and Dan Zhang, Nanoscale, 13: 19291 (2021). Crossref
  13. Y. I. Sementsov, M. L. Pyatkovsky, G. P. Prikhod'ko, V. M. Ogenko, I. G. Sidorenko, and V. V. Yanchenko, Surface, 7-8: 190 (2002).
  14. I. M. Yurkovskiy and T. Yu. Smirnova, Khim. Tverdogo Topliva, No. 4: 134 (1990).
  15. M. Yu. Belova, Materyly v Armaturostroenyy, 52, No. 1: 42 (2002).
  16. D. Yu. Karaman, V. S. Kopan, and S. L. Revo, Func. Mat., 12, No. 3: 507 (2005).
  17. A. V. Mavrinskiy, V. P. Andriychuk, and E. M. Baytinger, Izvestyia Chelyabinskogo Nauchnogo Tsentra, No. 3: 16 (2002).
  18. I. Ye. Galstian, E. G. Len, E. A. Tsapko, H. Yu. Mykhailova, V. Yu. Koda, M. O. Rud, M. Ya. Shevchenko, V. I. Patoka, M. M. Yakymchuk, and G. O. Frolov, Metallofiz. Noveishie Tekhnol., 42, No. 4: 451 (2020). Crossref
  19. V. V. Anikeyev, B. V. Kovalchuk, V. M. Lazorenko, et al., Inorg. Mater. Appl. Res., 7: 204 (2016). Crossref
  20. T. Zehnder, P. Schwaller, F. Munnik, S. Mikhailov, and J. Patscheider, Journal of Applied Physics, 95(8): 4327 (2013). Crossref
  21. A. I. Lopatynskyi, B. L. Melnychuk, and Z. V. Stasyuk, Fizyko-Khimichni, Strukturni i Emisiyni Vlastyvosti Tonkykh Plivok i Poverkhni Tverdoho Tila (Zaporizhzhia: 1995).
  22. N. Smirnova, Yu. Gnatyuk, N. Vityuk, O. Linnik, A. Eremenko, V. Vorobets, and G. Kolbasov, International Journal of Materials Engineering, 3(6): 124 (2013).
  23. Yu. I. Sementsov, S. L. Revo, K. O. Ivanenko, and S. Hamamda, Expanded Graphite and Its Composites, (Kyiv: PH 'Akademperiodyka': 2019). Crossref
  24. A. D. Rud, A. M. Lakhnik, V. G. Ivanchenko at al., Int. J Hydrogen Energy, 33: 1310 (2008). Crossref
  25. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Natureletters, 438, No. 10: 197 (2005). Crossref