Features of Magnetic Ordering of Solid Solutions and Electrical Properties of Multiferroics (1-$x$)BiFeO$_{3}$–$xR$MnO$_{3}$, where $R$ = Sc or Y

V. T. Dovgyi$^{1}$, A. V. Bodnaruk$^{2}$, V. Yu. Dmytrenko$^{1}$, V. V. Chyshko$^{1}$

$^{1}$Donetsk Institute for Physics and Engineering Named after O. O. Galkin, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine
$^{2}$Institute of Physics, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine

Received: 17.08.2022; final version - 23.09.2022. Download: PDF

The magnetic and electrical properties of the system of solid solutions (1-$x$)BiFeO$_{3}$–$xR$MnO$_{3}$, where $R$ = Sc or Y (0.05 $\leq x \leq$ 0.4), synthesized by nitrate technology are studied. The presence of ferromagnetic ordering in these ceramic multiferroics at room temperature is established. The concentration dependences of the magnetization $M(x)$ for both systems of solid solutions have an extremum; the maximum magnetization is observed in the compositions at $x$ = 0.15. The coercivity field $H_{c}$ for these compositions is of $\cong$ 5–90 Oe. The dielectric permeability of the samples (at $T$ = 300 K) varies in the range $\cong$ 17–297 at a frequency of 1 kHz, and at a frequency of 1 MHz, it varies in the range $\cong$ 7–25.

Key words: multiferroics, ferromagnets, magnetization, coexistence of magnetic phases, dielectric permeability.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i12/1565.html

DOI: https://doi.org/10.15407/mfint.44.12.1565

PACS: 75.47.Lx, 75.50.Gg, 75.78.-n, 75.85.+t, 77.22.Ch, 77.55.Nv, 77.80.B-

Citation: V. T. Dovgyi, A. V. Bodnaruk, V. Yu. Dmytrenko, and V. V. Chyshko, Features of Magnetic Ordering of Solid Solutions and Electrical Properties of Multiferroics (1-$x$)BiFeO$_{3}$–$xR$MnO$_{3}$, where $R$ = Sc or Y, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1565—1573 (2022) (in Ukrainian)


REFERENCES
  1. A. P. Pyatakov and A. K. Zvezdin, Uspekhi Fizicheskikh Nauk, 182, No. 6: 593 (2012) (in Russian). Crossref
  2. S. Dong, J.-M. Liu, S.-W. Cheong, and Zh. Ren, Adv. Phys., 60, No. 5-6: 519 (2015). Crossref
  3. M. Fiebig, J. Phys. D: Appl. Phys., 38: R123 (2005). Crossref
  4. A. V. Nazarenko, A. G. Razumnaya, M. F. Kupriyanov, Yu. V. Kabirov, A. G. Rudskaya, P. Yu. Teslenko, and N. B. Kofanova, Fizika Tverdogo Tela, 53, No. 8: 1523 (2011) (in Russian). Crossref
  5. S. N. Tripathy, K. K. Mishra, S. Sen, B. G. Mishra, D. K. Pradhan, R. Palai, and D. K. Pradhan, J. Appl. Phys., 114: 144104 (2013). Crossref
  6. R. Pandey, L. K. Pradhan, P. Kumar, and M. Kar, Ceram. Int., 44, No. 15: 18609 (2018). Crossref
  7. L. Chen, L. Zheng, Y. He, J. Zhang, Z. Mao, and X. Chen, J. Alloys Comp., 633: 216 (2015). Crossref