Microstructure and Tribological Properties of AlCuFeSc Coatings: Effects of Surface Roughness and Quasi-Crystalline $i$-Phase Content

Zhang Li$^{1}$, Changliang Wang$^{1}$, Chonggao Zhu$^{1}$, Haoliang Tian$^{1}$, Kostyantyn E. Grinkevych$^{2}$, Mykola O. Iefimov$^{2}$, Ivan V. Tkachenko$^{2}$, Sergiy V. Buchakov$^{2}$

$^{1}$Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material Beijing, Beijing Institute of Aeronautical Materials, 100095 Beijing, China
$^{2}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 23.09.2022. Download: PDF

High-velocity air–fuel (HVAF) spraying and detonation spraying (DS) methods are used to produce the Al–Cu–Fe–Sc coatings from a water-atomized powder on a low-carbon steel (Q235/SS330) substrate. X-ray diffraction phase analysis shows that the protective AlCuFeSc coatings produced by these methods contain different volume fractions of quasi-crystalline (QC) $i$-phase. Wear and friction behaviour of the produced AlCuFeSc coatings is studied in the dry and wet conditions depending on the loading type (quasi-static or dynamic) for various counter-bodies (Si$_{3}$N$_{4}$, WC–Co hard alloy, or 52100 bearing steel). The effects of the coating-surface roughness and the QC $i$-phase content are also analysed.

Key words: Al–Cu–Fe based quasi-crystal, protective coating, high-velocity air–fuel spraying, wear, friction.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i12/1629.html

DOI: https://doi.org/10.15407/mfint.44.12.1629

PACS: 61.44.Br, 62.20.Qp, 68.35.Ct, 68.35.Np, 81.15.Rs, 81.40.Pq, 81.65.Kn

Citation: Zhang Li, Changliang Wang, Chonggao Zhu, Haoliang Tian, Kostyantyn E. Grinkevych, Mykola O. Iefimov, Ivan V. Tkachenko, and Sergiy V. Buchakov, Microstructure and Tribological Properties of AlCuFeSc Coatings: Effects of Surface Roughness and Quasi-Crystalline $i$-Phase Content, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1629—1642 (2022)


REFERENCES
  1. M. P. Nascimento, R. C. Souza, I. M. Miguel, W. L. Pigatin, and H. J. C. Voorwald, Surf. Coat. Technol., 138: 113 (2001). Crossref
  2. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, G. I. Prokopenko, M. O. Iefimov, and K. E. Grinkevych, Wear, 462-463: 203494 (2020). Crossref
  3. B. N. Mordyuk, G. I. Prokopenko, K. E. Grinkevych, N. A. Piskun, and T. V. Popova, Surf. Coat. Technol., 309: 969 (2017). Crossref
  4. G. Contreras, C. Fajardo, J. A. Berríos, A. Pertuz, J. Chitty, H. Hintermann, and E. S. Puchi, Thin Solid Films, 355-356: 480 (1999). Crossref
  5. M. J. Ortiz-Mancilla, C. Mariño-Berroterán, J. A. Berríos-Ortiz, G. Mesmacque, and E. S. Puchi-Cabrera, Surf. Eng., 20: 345 (2004). Crossref
  6. J. M. Dubois, S. S. Kang, and J. Von Stebut, J. Mater. Sci. Let., 10: 537 (1991). Crossref
  7. S. S. Kang, J. M. Dubois, and J. Von Stebut, J. Mater Res., 8: 2471 (1993). Crossref
  8. D. J. Sordelet, M. F. Besser, and J. L. Logsdon, Mater. Sci. Eng. A, 255: 54 (1998). Crossref
  9. J.-M. Dubois, Mater. Sci. Eng. A, 294-296: 4 (2000). Crossref
  10. D. J.Sordelet, M. J.Kramer, and O. Unal, J. Thermal Spray Technol., 4: 235 (1995). Crossref
  11. D. J. Sordelet, M. F. Besser, and L. E. Anderson, J. Thermal Spray Technol., 5: 161 (1996). Crossref
  12. E. Fleury, S. M. Lee, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids, 278: 194 (2000). Crossref
  13. M. Cekada, P. Panjan, D. Juric, J. Dolinsek, and A. Zalar, Thin Solid Films, 459: 267 (2004). Crossref
  14. M. O. Iefimov, D. V. Lotsko, Yu. V. Milman, A. L. Borisova, S. I. Chugunova, Ye. A. Astakhov, and O. D. Neikov, High Temp. Mater. Proc., 25: 31 (2006). Crossref
  15. Yu. V. Milman, D. V. Lotsko, S. N. Dub, A. I. Ustinov, S. S. Polishchuk, and S. V. Ulshin, Surf. Coat. Technol., 201: 5937 (2007). Crossref
  16. K. Q. Lee, Y. Chen, W. Dai, D. Naugle, and H. Liang, Mater. Des., 193: 108735 (2020). Crossref
  17. K. Q. Lee, J. L. Hsu, D. Naugle, and H. Liang, Mater. Des., 108: 440 (2016). Crossref
  18. B. N. Mordyuk, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and M. I. Danylenko, Surf. Coat. Technol., 205: 5278 (2011). Crossref
  19. B. N. Mordyuk, G. I. Prokopenko, Y. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  20. N. Kang, Y. Q. Fu, Pierre Coddet, B. Guelorget, H. Liao, and C. Coddet, Mater. Des., 132: 105 (2017). Crossref
  21. M. Galano, F. Audebert, A. Garcia Escorial, I. C. Stone, and B. Cantor, Acta Mater., 57: 5120 (2009). Crossref
  22. Yu. V. Milman, D. V. Lotsko, and O. I. Sirko, Mater. Sci. Forum., 331-337: 1107 (2000). Crossref
  23. Yu. V. Milman, High Temp. Mater. Proc., 25, Nos. 1-2: 1 (2006). Crossref
  24. O. D. Neikov, Proc. of 2000 Powder Metallurgy World Congress (Kyoto: Japan Society of Powder Metallurgy: 2000), p. 464.
  25. O. D. Neikov, S. S. Naboychenko, I. B. Murashova, and N. A. Iefimov, Handbook of Non-Ferrous Metal Powders (Ed. O. D. Neikov) (Amsterdam: Elsevier: 2019), p. 685. Crossref
  26. H. L.Tian, M. Q. Guo. C. L. Wang. Z. H. Tang, and Y. J. Cui, Surf. Eng., 34, No. 10: 762 (2018). Crossref
  27. H. L. Tian, C. L. Wang, M. Q. Guo, Y. J. Cui, J. G. Gao, and Z. H. Tang, Friction, 9, No. 2: 315 (2021). Crossref
  28. N. A. Iefimov, Handbook of Non-Ferrous Metal Powders (Ed. O. D. Neikov) (Amsterdam: Elsevier: 2019), p. 313. Crossref
  29. Yu. V. Milman, K. Grinkevich, S. Chugunova, W. Lojkowski, M. Djahanbakhsh, and H. J. Fecht, Wear, 258: 77 (2005). Crossref
  30. U. Köster, W. Liu, H. Liebertz, and M. Michel, J. Non-Cryst. Solids, 153-154: 446 (1993). Crossref
  31. B. N. Mordyuk, Y. V. Milman, M. O. Iefimov, and K. E. Grinkevych, J. Manuf. Technol. Research, 9, Iss. 3: 4 (2017).