Structure, Phase Composition and Mechanical Properties for the High Entropy Solid Solutions Based upon MnFeCoNiCu System Versus Collective Behaviour of their Constituents

T. O. Kosorukova$^{1}$, Yu. M. Koval’$^{1}$, V. V. Odnosum$^{1}$, V. S. Filatova$^{1}$, G. Gerstein$^{2}$, H. J. Maier$^{2}$, G. S. Firstov$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institut für Werkstoffkunde Leibniz Universität Hannover, An der Universität 2, DE-30823 Garbsen, Germany

Received: 23.07.2022. Download: PDF

Structure and phase-composition changes of the cast multicomponent alloys based on MnFeCoNiCu are studied depending on variations in the enthalpy and entropy of mixing, the difference in atomic sizes, and the concentration of valence electrons, starting from the medium-entropy TiFeCoNi alloy and approaching the Cantor alloy. Changes in the crystal structure from h.c.p. to f.c.c. one as well as variations in the phase composition are revealed. As shown, the specified changes lead to significant strengthening with significant plasticity. Such plasticity is caused by the f.c.c.–h.c.p. martensitic transformation, which is combined with the plastic deformation of the distorted lattice, which, in its own turn, is characterized by significant strengthening.

Key words: high entropy alloys, solid solutions, structure, martensitic transformation, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i12/1711.html

DOI: https://doi.org/10.15407/mfint.44.12.1711

PACS: 61.05.cp, 61.50.-f, 61.72.Dd, 62.20.fg, 64.70.kd, 81.30.Kf, 81.40.Jj

Citation: T. O. Kosorukova, Yu. M. Koval’, V. V. Odnosum, V. S. Filatova, G. Gerstein, H. J. Maier, and G. S. Firstov, Structure, Phase Composition and Mechanical Properties for the High Entropy Solid Solutions Based upon MnFeCoNiCu System Versus Collective Behaviour of their Constituents, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1711—1733 (2022) (in Ukrainian)


REFERENCES
  1. J. W. Yeh, S. K. Chen, S. G. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater., 6: 299 (2004). Crossref
  2. Y. Zhang, T. T. Zuo, Z. Nang, M. C. Cao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci., 61: 1 (2014). Crossref
  3. B. S. Murty, J. W. Yeh, and S. Ranganathan, High Entropy Alloys (Oxford: Elsevier: 2014). Crossref
  4. B. Cantor, Entropy, 16: 4749 (2014). Crossref
  5. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Materials Today, 19: 349 (2016). Crossref
  6. V. F. Gorban', N. A. Krapivka, and S. A. Firstov, Phys. Metals Metallogr., 118: 970 (2017). Crossref
  7. G. S. Firstov, J. Van Humbeeck, and Yu. N. Koval, Mater. Sci. Eng. A, 378: 2 (2004). Crossref
  8. G. S. Firstov, J. Van Humbeeck, and Yu. N. Koval, J. Intel. Mater. Sys. Struct., 17: 1041 (2006). Crossref
  9. J. Ma, I. Karaman, and R. D.Noebe, Int. Mater. Rev., 55: 257 (2010). Crossref
  10. T. Niendorf, P. Krooß, E. Batyrsina, A. Paulsen, Y. Motemani, A. Ludwig, P. Buenconsejo, J. Frenzel, G. Eggeler, and H. J. Maier, Mater. Sci. Eng. A, 620: 359 (2015). Crossref
  11. G. Firstov, Yu. Koval, J. Van Humbeeck, A. Timoshevskii, T. Kosorukova, and P. Verhovlyuk, Shape Memory Alloys: Properties, Technologies, Opportunities (Eds. N. Resnina and V. Rubanik) (Zurich: Trans Tech Publications: 2015), p. 207. Crossref
  12. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, J. Alloys Comp., 509: 6043 (2011). Crossref
  13. S. A. Firstov, T. G. Rogul', N. A. Krapivka, S. S. Ponomarev, V. N. Tkach, V. V. Kovylyaev, V. F. Gorban', and M. V. Karpets, Russ. Metall., 2014: 285 (2014). Crossref
  14. K. Y. Tsai, M. H. Tsai, and J. W. Yeh, Acta Mater., 61, Iss. 13: 4887 (2013). Crossref
  15. G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and V. V. Odnosum, Materials Today: Proceedings, 2S: S499 (2015). Crossref
  16. D. G. Pettifor, J. Phys. C: Solid State Phys., 3: 367 (1970). Crossref
  17. S. C. Guo and T. Liu, Prog. Natural Sci.: Materials Int., 21: 433 (2011). Crossref
  18. G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and P. A. Verhovlyuk, Shape memory and Superelasticity, 1: 400 (2015). Crossref
  19. G. Firstov, A. Timoshevskii, T. Kosorukova, Yu. Koval, Yu. Matviychuk, and P. Verhovlyuk, MATEC Web of Conferences, 33: 06006: (2015). Crossref
  20. L. Q. Ma, L. M. Wang, T. Zhang, and A. Inoue, Mater. Trans., 43: 277 (2002). Crossref
  21. L. Lilensten, J. P. Couzinié, L. Perrière, J. Bourgon, N. Emery, and I. Guillot, Mater. Lett., 132: 123 (2014). Crossref
  22. C.-H. Tsau, Mater. Sci. Eng. A, 501: 81 (2009). Crossref
  23. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A, 375: 213 (2004). Crossref
  24. J. I. Lee, K. Tsuchiya, W. Tasaki, H. S. Oh, T. Sawaguchi, H. Murakami, T. Hiroto, Y. Matsushita, E. S. Park, Sci. Rep., 9: 13140 (2019). Crossref
  25. A. Takeuchi and A. Inoue, Mater. Trans., 46: 12: 2817 (2005). Crossref
  26. S. Guo and C. T. Liu, Natural Sci.: Materials Int., 21: 433 (2011). Crossref
  27. L. Lutterotti, MAUD: Materials Analysis Using Diffraction. A Rietveld Extended Program to Perform the Combined Analysis (Trento: University of Trento: 2015).
  28. E. Galvãoda da Silva, C. A. Samudio Peres, and M. McElfresh, J. Magn. Magn. Mater., 138: 63 (1994). Crossref