Stressed State of Chrome Parts During Diamond Burnishing

M. Bembenek$^{1}$, V. Kopei$^{2}$, L. Ropyak$^{2}$, K. Levchuk$^{3}$

$^{1}$AGH University of Science and Technology, 30 Adama Mickiewicza Ave., PL-30059 Krakow, Poland
$^{2}$Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., UA-76019 Ivano-Frankivsk, Ukraine
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 04.01.2023; final version - 15.02.2023. Download: PDF

A description of strengthening methods increasing the wear resistance and corrosion resistance of the working surfaces of machine parts is provided. It has been established that the chromium coatings are most often used among metal coatings. These coatings are applied to the surface of machine parts in a calm or flowing electrolyte. The advantages of electrochemical chromium plating in flowing electrolytes compared to electrochemical chromium plating in calm electrolytes are substantiated. Chromium plating has been shown to provide a significant increase in wear resistance and corrosion resistance, but causes a decrease in the fatigue strength of steel machine parts. The analysis of mechanical processing operations was carried out—grinding, honing of surfaces with chrome coatings and their diamond burnishing. The work aims to study the effect of diamond burnishing technological modes on the stress-strain state of the electrochemical chromium coating applied to a steel base. A finite-element model of the process of burnishing with a diamond tool chromium coating applied to a cylindrical part made of 40KhN steel was developed. Researched the influence of the depth of diamond burnishing on the stress-strain state of the part with chromium coating. It was established that with the burnishing depth of $t$ = 8 $\mu$m, the residual compressive stresses are at a depth of 80–100 $\mu$m for both investigated coating thicknesses, which will contribute to an increase in the fatigue strength of the parts.

Key words: electrochemical chromium coating, electrolyte, diamond indenter, long-dimensional parts, Mises stress.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i02/0239.html

DOI: https://doi.org/10.15407/mfint.45.02.0239

PACS: 46.15.-x, 46.55.+d, 46.70De, 61.82Bg, 68.35bd, 81.15Pq, 81.40Pq, 82.45Bb

Citation: M. Bembenek, V. Kopei, L. Ropyak, and K. Levchuk, Stressed State of Chrome Parts During Diamond Burnishing, Metallofiz. Noveishie Tekhnol., 45, No. 2: 239—250 (2023)


REFERENCES
  1. O. Bazaluk, O. Slabyi, V. Vekeryk, A. Velychkovych, L. Ropyak, and V. Lozynskyi, Energies, 14, No. 12: 3514 (2021). Crossref
  2. V. Moisyshyn and K. Levchuk, Min. Miner. Depos., 10, No. 3: 65 (2016). Crossref
  3. I. Shatskyi, I. Vytvytskyi, M. Senyushkovych, and A. Velychkovych, IOP Conf. Ser.: Mater. Sci. Eng., 564, No. 1: 12073 (2019). Crossref
  4. A. Syrotyuk, O. Vytyaz, and J. Ziaja, Min. Miner. Depos., 11, No. 4: 96 (2017) (in Ukrainian). Crossref
  5. L. Poberezhny, I. Chudyk, A. Hrytsanchuk, O. Mandryk, T. Kalyn, H. Hrytsuliak, and Y. Yakymechko, Management Systems in Production Engineering, 28, Iss. 3: 141 (2020). Crossref
  6. O. Ivanov, P. Prysyazhnyuk, D. Lutsak, O. Matviienkiv, and V. Aulin, Management Systems in Production Engineering, 28, Iss. 3: 178 (2020). Crossref
  7. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022). Crossref
  8. B. Trembach, A. Grin, N. Makarenko, S. Zharikov, I. Trembach, and O. Markov, J. Mater. Res. Technol., 9, Iss. 5: 10520 (2020). Crossref
  9. J. Pawlik, J. Cieślik, M. Bembenek, T. Góral, S. Kapayeva, and M. Kapkenova, Materials, 15, No. 17: 6019 (2022). Crossref
  10. V. V. Shyrokov, K. B. Vasyliv, Z. A. Duryahina, H. V. Laz'ko, and N. B. Rats'ka, Mater. Sci., 45, No. 4: 473 (2009). Crossref
  11. S. I. Kryshtopa, D. Y. Petryna, I. M. Bogatchuk, I. B. Prun'ko, and V. M. Mel'nyk, Mater. Sci., 53, No. 3: 351 (2017). Crossref
  12. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, and A. Kozachenko, Mater. Sci. Forum, 968: 131 (2019). Crossref
  13. Z. A. Duryagina, S. A. Bespalov, V. Ya. Pidkova, and D. Yu. Polockyj, Metallofiz. Noveishie Tekhnol., 33: 393 (2011).
  14. M. Dutkiewicz, A. Velychkovych, I. Shatskyi, and V. Shopa, Materials, 15, No. 13: 4671 (2022). Crossref
  15. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022). Crossref
  16. I. Drach, V. Royzman, A. Bubulis, and K. Juzėnas, Mechanika, 27, No. 1: 45 (2021). Crossref
  17. V. Kotsyubynsky, L. Shyyko, T. Shihab, P. Prysyazhnyuk, V. Aulin, and V. Boichuk, MaterialsToday: Proceedings, 35, Part 4: 538 (2019). Crossref
  18. M. M. Student, I. B. Ivasenko, V. M. Posuvailo, H.H. Veselivs'ka, A. Y. Pokhmurs'kyi, Y. Y. Sirak, and V. M. Yus'kiv, Mater. Sci., 54, No. 6: 899 (2019). Crossref
  19. M. Bembenek, T. Mandziy, I. Ivasenko, O. Berehulyak, R. Vorobel, Z. Slobodyan, and L. Ropyak, Sensors, 22, No. 19: 7600 (2022). Crossref
  20. S. J. Asadauskas, A. Griguceviien, K. Leinartas, and D. Brainskien, Tribol. Int., 44, No. 5: 557 (2011). Crossref
  21. V. A. Vynar, V. I. Pokhmurs'kyi, I. M. Zin', K. B. Vasyliv, and O. P. Khlopyk, Mater. Sci., 53, No. 5: 717 (2018). Crossref
  22. N. A. Dolgov, Strength Mater., 48, No. 5: 658 (2016). Crossref
  23. L. Y. Ropyak, M. V. Makoviichuk, I. P. Shatskyi, I. M. Pritula, L. O. Gryn, and V. O. Belyakovskyi, Funct. Mater., 27, No. 3: 638 (2020).
  24. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022). Crossref
  25. I. P. Shatskii, J. Math. Sci., 103, No. 3: 357 (2001). Crossref
  26. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Proceedings of the 11th Int. Conf. Shell Structures: Theory and Applications, (SSTA 2017) (October 11-13, 2017), Gdansk, Poland. Shell Structures: Theory and Applications (Eds. W. Pietraszkiewicz and W. Witkowski) (CRC Pressr, London: 2017), vol. 4, p. 165. Crossref
  27. R. M. Tatsii and O. Y. Pazen, J. Eng. Phys. Thermophys., 91, No. 6: 1373 (2018). Crossref
  28. A. I. Bandura and O. B. Skaskiv, Rocky Mountain J. Math., 49, No. 4: 1063 (2019). Crossref
  29. R. M. Tatsii, M. F. Stasyuk, and O. Y. Pazen, J. Eng. Phys. Thermophys., 94, No. 2: 298 (2021). Crossref
  30. Y. Kusyi and V. Stupnytskyy, Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering (Eds. V. Ivanov, et al.) (Springer, Cham: 2020), p. 276. Crossref
  31. Ya. Kusyi, V. Stupnytskyy, O. Onysko, E. Dragašius, S. Baskutis, and R. Chatys, Eksploatacja i Niezawodność-Maintenance and Reliability, 24, No. 4: 655 (2022). Crossref
  32. V. B. Kopei, O. R. Onysko, and V. G. Panchuk, J. Phys. Conf. Ser., 1426, No. 1: 012033 (2020). Crossref
  33. Y. M. Kusyi and A. M. Kuk, J. Phys. Conf. Ser., 1426, No. 1: 012034 (2020). Crossref
  34. T. Shihab, P. Prysyazhnyuk, I. Semyanyk, R. Anrusyshyn, O. Ivanov, and L. Troshchuk, Management Systems in Production Engineering, 28, No. 2: 84 (2020). Crossref
  35. S. Krivileva, A. Zakovorotniy, V. Moiseev, N. Ponomareva, A. Rassokha, and O. Zinchenko, Funct. Mater., 26, No. 2: 347 (2019). Crossref
  36. T. M. Radchenko, O. S. Gatsenko, V. V. Lizunov, and V. A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020). Crossref
  37. A. B. Melnick, V. K. Soolshenko, and K. H. Levchuk, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1387 (2020). Crossref
  38. V. S. Protsenko, L. S. Bobrova, S. A. Korniy, A. A. Kityk, and F. I. Danilov, Funct. Mater., 25, No. 3: 539 (2018). Crossref
  39. V. S. Protsenko, L. S. Bobrova, A. S. Baskevich, S. A. Korniy, and F. I. Danilov, J. Chem. Technol. Metall., 53, No. 5: 906 (2018).
  40. O. Ya. Dubei, T. F. Tutko, L. Ya. Ropyak, and M. V. Shovkoplias, Metallofiz. Noveishie Tekhnol., 44, No. 2: 251 (2022) (in Ukrainian). Crossref
  41. V. Meinhold, D. Höhlich, T. Mehner and T. Lampke, Coatings, 12, No. 1: 56 (2022). Crossref
  42. Y. Gu, H. Zhang, X. Fu, L. Wang, Z. Shen, J. Wang, Z. Song, and L. Zhang, Materials, 14, No. 10: 2487 (2021). Crossref
  43. S. Shabbir, S. D. Garvey, S. M. Dakka, and B. C. Rothwell, Coatings, 11, No. 2: 156 (2021). Crossref
  44. S. Li, Z. Yang, Q. Wan, J. Hou, Y. Xiao, X. Zhang, R. Gao, and L. Meng, Coatings, 12, No. 9: 1275 (2022). Crossref
  45. D. M. Galimov, D. V. Ardashev, and A. A. Dyakonov, Solid State Phenomena, 299 SSP: 872 (2020). Crossref
  46. A. Raza and S. Kumar, Tribol. Int., 174: 107717 (2022). Crossref
  47. S. P. Chenakin, B. N. Mordyuk, and N. I. Khripta, Appl. Surf. Sci., 470: 44 (2019). Crossref
  48. D. Pavlenko, E. Kondratiuk, Y. Torba, Y. Vyshnepolskyi, and D. Stepanov, Eastern-European J. Enterprise Technol., 1: 31 (2022). Crossref
  49. V. I. Kyryliv, V. I. Gurey, O. V. Maksymiv, I. V. Hurey, and Y. O. Kulyk, Mater. Sci., 57, No. 3: 422 (2021). Crossref
  50. O. V. Maksymiv, V. I. Kyryliv, V. P. Chaikovskyi, B. R. Tsizh, A. M. Kostruba, and V. I. Hurei, Mater. Sci., 56, No. 4: 523 (2021). Crossref
  51. I. Shepelenko, Y. Tsekhanov, M. Storchak, Y. Nemyrovskyi, and V. Cherkun, Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. (Eds. V. Tonkonogei, et al.) (Springer, Cham: 2021), p. 619. Crossref
  52. O. Onysko, V. Kopei, I. Medvid, L. Pituley, and T. Lukan, Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering (Eds. V. Ivanov, et al.) (Springer, Cham: 2020), p. 432. Crossref
  53. V. Kopei, O. Onysko, V. Panchuk, L. Pituley, and I. Schuliar, Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering (Eds. V. Tonkonogei, et al.) (Springer, Cham: 2022), p. 395. Crossref
  54. A. Saldaña-Robles, H. Plascencia-Mora, E. Aguilera-Gómez, A. Saldaña-Robles, A. Marquez-Herrera and J. A. Diosdado-De la Peña, Surf. Coat. Technol., 339: 191 (2018). Crossref
  55. D. F. Silva-Álvarez, A. Márquez-Herrera, A. Saldana-Robles, M. Zapata-Torres, R. Mis-Fernández, J. L. Pena-Chapa, J. Moreno-Palmerín, and E. Hernández-Rodríguez, J. Mater. Res. Technol., 9, No. 4: 7592 (2020). Crossref
  56. W. Brostow, K. Czechowski, W. Polowski, P. Rusek, D. Toboła, and I. Wronska, Mater. Res. Innovations, 17, No. 4: 269 (2013). Crossref