Features of Identifying the Primary Structure of Carbon Steels for the Production of Railway Axles

O. I. Babachenko, T. V. Balakhanova, O. A. Safronova, Zh. A. Dement’eva

Z. I. Nekrasov Iron and Steel Institute, NAS of Ukraine, 1 Academician Starodubov Sqr., UA-49050 Dnipro, Ukraine

Received: 24.08.2022; final version - 14.09.2022. Download: PDF

Local variations of the chemical composition, that is, compositional inhomogeneities, play an important role in the thermodynamic stability and spatial distribution of phases in multiphase steels. As is already known, the inhomogeneity of the distribution of chemical elements in the structure of structural grade carbon steels is formed mainly during their crystallization, during the hardening of the ingot or continuously cast billet. The limited solubility of alloying elements in the solid state in steel leads to liquation during solidification. During crystallization, the solute is partitioned between the solid and the liquid to enrich or deplete the interdendritic regions. This naturally leads to variations in the composition on a micrometer scale, i.e., microsegregation. The formation of the liquation background (dendritic pattern) is due to the alternate enrichment of elements of individual microzones (segregation) during steel crystallization. The areas of segregation of manganese and silicon even in carbon steels have a strong influence on the morphology and arrangement of phases of the final structure formed in carbon steel products. Diffusion of solid elements during the reheat cycle, particularly aluminium and manganese, is too slow to result in chemical homogenization. As a result, the segregation profiles present after casting remain during all subsequent processes and have a significant impact on the final striated in homogeneity of the microstructure. Thus, the control of microsegregation during hardening in modern steels is crucial for obtaining uniform mechanical properties of the final product, since phase transformations occurring during thermal and/or deformation treatments determine the final microstructure and are reflected by the local distribution of hardness.

Key words: chemical heterogeneity, microsegregation, macroheterogeneity, carbon steel, railway axle.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i02/0275.html

DOI: https://doi.org/10.15407/mfint.45.02.0275

PACS: 61.66.f, 61.72.y, 81.05.Bx, 81.05.Uw, 81.40.z

Citation: O. I. Babachenko, T. V. Balakhanova, O. A. Safronova, and Zh. A. Dement’eva, Features of Identifying the Primary Structure of Carbon Steels for the Production of Railway Axles, Metallofiz. Noveishie Tekhnol., 45, No. 2: 275—292 (2023) (in Ukrainian)


REFERENCES
  1. B. Ennis, E. Jimenez-Melero, R. Mostert, B. Santillana, and P. Lee, Acta Mater., 115: 132 (2016). Crossref
  2. Y. Chang, C. Haase, D. Szeliga, L. Madej, U. Hangen, M. Pietrzyk, and W. Bleck, Mater. Sci. and Eng.: A, 827: 142078 (2021). Crossref
  3. C. Yan, X. Ju, Y. Meng, and X. Shi, SN Appl. Sci. 1: 623 (2019). Crossref
  4. M. Bekkert and Kh. Klemm, Sposoby Metallograficheskogo Travleniya [Meth-ods of Metallographic Etching] (Moscow: Metallurgiya: 1988) (in Russian).
  5. V. S. Kovalenko Metallograficheskie Reaktivy Metallographic Reagents (Moskva: Metallurgiya: 1970) (in Russian).
  6. N. E. Tenaglia, R. E. Boeri, A. D. Basso, and J. M. Massone, Int. J. Cast Met. Res., 30: 2: 103 (2017). Crossref
  7. A. Basso, I. Toda-Caraballo, D. San Martin, and F. Caballero, J. Mater. Res. Technol., 9: 3013 (2020). Crossref
  8. C. Celada-Casero, I. Toda-Caraballo, B. Kim, and D. San Martin, Mater. Char-act., 84: 142 (2013). Crossref
  9. O. I. Babachenko, K. H. D'omina, H. A. Kononenko, R. V. Podolskyi, and O. A. Safronova, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1537 (2021).
  10. O. I. Babachenko, H. A. Kononenko, R. V. Podolskyi, O. A. Safronova, and A. O. Taranenko, Mater. Sci., 58: 417 (2022). Crossref
  11. L. P. Gerasimova and Yu. P. Guk, Prakticheskaya Metallografiya Practical Metallography (Moskva: 2017) (in Russian).
  12. K. P. Bunin, Ya. N. Malinochka, and Yu. N. Taran, Osnovy Metallografii Chu-guna Fundamentals of Cast Iron Metallography (Moskva: Metallurgiya: 1969) (in Russian).
  13. A. G. Anisovich and M. I. Markevich, Lit'e i Metallurgiya, 2: 91 (2022). Crossref
  14. E. V. Panchenko, K. V. Popov, B. I. Krimer, P. P. Arsent'ev, and Ya. D. Khorin, Laboratoriya Metallohrafii  Laboratory of Metallography (Moskva: Metal-lurgizdat: 1957) (in Russian).
  15. V. V. Golovko, D. Yu. Yermolenko, and S. M. Stepanyuk, Avtomatichne Zvaryuvannya, 6: 3 (2020) (in Ukrainian).
  16. V. A. Il'ynskiy, N. I. Gabel'chenko, L. V. Kostyleva, and E. Yu. Karpova, Izves-tiya Volgogradskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 4: 158 (2010) (in Russian).
  17. O. I. Babachenko, K. H. D'omina, H. A. Kononenko, and R. V. Podolskyi, Physi-cal Metallurgy and Heat Treatment of Metals, 4: 17 (2020). Crossref
  18. A. A. Kazakov, O. V. Pakhomova, and E. I. Kazakova, Chernyye Metally, 9: 15 (2013) (in Russian).
  19. A. B. Sychkov, E. V. Parusov, A. N. Zavalishin, and A. V. Kozlov, J. Chem. Technol. Metall., 53, No. 5: 977 (2018).
  20. S. Isavand, M. Kardan-Halvaei, and A. Assempour, Int.J. Solids Struct., 233: 111205 (2021). Crossref
  21. E. V. Parusov, S. I. Gubenko, A. B. Sychkov, I. N. Chuiko, L. V. Sagura, and A. I. Denisenko, Steel Transl., 48, No. 12: 812 (2018). Crossref
  22. E. V. Parusov, G. D. Sukhomlin, S. I. Gubenko, A. B. Sychkov, A. I. Denisenko, and G. Ya. Kamalova, Steel Transl., 48, No. 7: 472 (2018). Crossref
  23. E. V. Parusov, S. I. Gubenko, A. B. Sychkov, I. N. Chuiko, L. V. Sagura, and G. Ya. Kamalova, Steel Transl., 49, No. 5: 350 (2019). Crossref
  24. M. S. Zavgorodniy, V. V. Mos'pan, and V. V. Mocnyy, Stal', 1: 13 (2017) (in Russian).
  25. A.Yu. Borisenko, Rozvytok Teoriyi Strukturnoyi Spadkovosti u Vuhletseviy Stali dlya Ehnerhoefehktyvnoho Vyrobnytstva Prokatu z Bezperervnolytykh Zahotovok Development of the Theory of Structural Inheritance in Carbon Steel for Energy-Efficient Production of Rolled Products from Continuously Cast Billets. (Thesis of Disser. for … Candidate of Technical Sciences) (Kyiv: Physi-cal-Technological Institute of Metals and Alloys, N.A.S.U.: 2021) (in Ukraini-an).
  26. A. Babachenko, R. Podolskyi, K. D'omina, G. Kononenko, and O. Safronova, Modern Problems of Metallurgy, 24: 12 (2021). Crossref
  27. O. I. Babachenko, T. V. Balakhanova, O. A. Safronova, H. A. Kononenko, and K. H. D'omina, Science and Transport Progress, 95: 60 (2021). Crossref
  28. H. V. Levchenko, K. H. D'omina, and P. D. Hrushko, Metaloznavstvo ta Termichna Obrobka Metaliv, 2: 54 (2005) (in Ukrainian).
  29. A. I. Yatsenko, V. E. Khrychikov, T. S. Khokhlova, A. Yu. Borisenko, N. I. Repyna, and P. D. Grushko, Kristalliyzatsiya i Pervichnaya Struktura Konstruktsionnykh Staley Crystallization and Primary Structure of Structural Steels (Dnepropetrovsk: Zhurfond: 2010) (in Russian).
  30. S. A. Saltykov, Stereometricheskaya Metallohrafiya Stereometric Metallog-raphy (Moskva: Metallurgiya: 1970) (in Russian).