Heat Effects in Rapidly-Quenched NANOMET Type Ribbons after Intense Plastic Deformation

M. O. Vasylyev$^{1}$, B. M. Mordyuk$^{1,2}$, I. V. Zagorulko$^{1}$, S. M. Voloshko$^{2}$, V. K. Nosenko$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 20.12.2022; final version - 12.01.2023. Download: PDF

This work grounds the relevance of the new ways for modifying the structure and properties of amorphous metallic alloys using severe plastic deformation (SPD) resulting the formation of nanocrystalline materials with new physical and mechanical properties. In this work, for the first time, the peculiarities of deformation nanocrystallization of one of the representatives of this class of material, such as NANOMET doped with phosphorus, namely, alloy Fe$_{81}$B$_{7}$Si$_{1}$P$_{10}$Cu$_{1}$ are studied. To perform SPD, the method of high-frequency mechanical-impact (HFMI) treatment is used in modes, which will ensure the maximum hardening effect as compared to the original rapidly solidified amorphous ribbon. The special features of the structure and kinetics of the deformation-induced crystallization of the alloy underwent the SPD by the HFMI method are studied. Two crystallization effects are established during heating of the amorphous ribbon of maximum hardness induced by the applied HFMI. First one, this is the shift of critical temperatures towards low exothermal temperatures, and second one, this is the lowering of the activation energy for crystallization as compared to the undeformed amorphous sample. The reasons of the observed SPD-induced changes in thermodynamic characteristics are established.

Key words: amorphous alloy, severe plastic deformation, nanocrystallization, activation energy, impact treatment, microhardness.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i03/0293.html

DOI: https://doi.org/10.15407/mfint.45.03.0293

PACS: 61.43.Dq, 62.20.mj, 62.20.mt, 62.20.Qp, 68.35.Dv

Citation: M. O. Vasylyev, B. M. Mordyuk, I. V. Zagorulko, S. M. Voloshko, and V. K. Nosenko, Heat Effects in Rapidly-Quenched NANOMET Type Ribbons after Intense Plastic Deformation, Metallofiz. Noveishie Tekhnol., 45, No. 3: 293—310 (2023) (in Ukrainian)


REFERENCES
  1. A. M. Glezer and B. V. Molotilov, Struktura i Mekhanicheskiye Svoystva Amorfnykh Splavov [Structure and Mechanical Properties of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  2. V. P. Alekhin and V. A. Khonik, Struktura i Fizicheskiye Zakonomernosti Deformatsii Amorfnykh Splavov [Structure and Physical Regularities of Deformation of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  3. M. O. Vasylyev, V. K. Nosenko, I. V. Zagorulko, and S. M. Voloshko, Prog. Phys. Met., 21: 319 (2020). Crossref
  4. M. A. Vasil'ev, G. I. Prokopenko, and V. S. Filatova, Progr. Phys. Met., 5, No. 3: 345 (2004) (in Russian). Crossref
  5. N. I. Noskova, N. F. Vildanov, and R. I. Kuznetsov, Fiz. Met. Metalloved., 65: 669 (1988) (in Russian).
  6. S. Aronin, G. E. Abrosimova, I. I. Zver'kova, D. Lang, and R. Luck, J. Non-Cryst. Solids., 208: 139 (1996). Crossref
  7. G. E. Abrosimova, A. V. Serebryakov, and Zh. D. Sokolovskaya, Fiz. Met. Metalloved., 66: 468 (1988) (in Russian).
  8. M. Kondo, T. Shibata, H. Kawanowa Y. Gotoh, and R. Souda, Nuclear Instruments and Methods in Physics Research. Section B, 232: 134 (2005). Crossref
  9. B. Chen, S. Yang, X. Liu, B. Yan, and W. Lu, J. Alloys Comp., 448: 234 (2008).
  10. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci., 44: 291 (1999). Crossref
  11. A. Makino, T. Hatanai, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A, 226-228: 594 (1997). Crossref
  12. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  13. G. I. Prokopenko, B. M. Mordyuk, M. O. Vasiliev, and S. M. Voloshko, Fizychni Osnovy Ultrazvukovoho Udarnoho Zmitsnennya Metalevykh Poverkhon' [Physical Foundations of Ultrasonic Impact Testing of Metal Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  14. B. M. Mordyuk, G. I. Prokopenko, S. M. Voloshko, S. O. Solovei, I. M. Klochkov, G. O. Linnyk, T. A. Krasovskyi, and M. V. Visokolyan, Ultrazvukova Udarna Obrobka Konstruktsiy i Sporud Transportnoho Mashynobuduvannya [Ultrasonic Shock Treatment of Structures And Structures of Transport Engineering] (Sumy: University Book: 2020) (in Ukrainian).
  15. M. O. Vasiliev, V. A. Tynkov, Yu. M. Petrov, S. M. Voloshko, H. G. Galstyan, V. T. Cherepin, and A. S. Khodakovsky, Metallofiz. Noveish. Tekhnol., 35, No. 5: 667 (2013) (in Ukrainian).
  16. Ch. Ma, H. Qin, Zh. Ren, S. C. O'Keeffe, J. Stevick, G. L. Doll, Y. Dong, B. Winiarski, and Ch. Ye, J. Alloys Comp., 718: 246 (2017). Crossref
  17. D. Gunderov, V. Slesarenko, A. Lukyanov, A. Churakova, E. Boltynjuk, V. Pushin, E. Ubyivovk, A. Shelyakov, and R. Valiev, Advanced Engineering Materials, 17, Iss. 12: 1728 (2015). Crossref
  18. N. F. Shkodych, A. S. Rogachev, S. G. Vadchenko, I. D. Kovalev, A. A. Nepapushev, S. S. Ruvimov, and A. S. Mukasyan, Theory and Processes of Forming and Sintering of Powder Materials, 2: 14 (2017) (in Russian).
  19. G. F. Korznikova and E. A. Korznikova, Letters About Materials, 2: 25 (2012) (in Russian). Crossref
  20. D. Gunderov and V. Astanin, Metals, 10, No. 3: 415 (2020). Crossref
  21. A. M. Glezer and M. R. Plotnikova, Scientific Bulletins. Series: Mathematics. Physics, 23: 159 (2011).
  22. A. G. Ilyinskii, G. M. Zelinskaya, V. V. Maslov, V. K. Nosenko, and Yu. V. Lepeeva, Metallofiz. Noveish. Tekhnol., 26: 1501 (2004) (in Russian).
  23. V. V. Maslov and D. Yu. Paderno, Amorfnyye Metallicheskie Splavy [Amorphous Metal Alloys] (Kiev: Naukova Dumka: 1987), p. 52 (in Russian).
  24. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, I. O. Kruhlov, and V. I. Zakiev, Surf. Coat. Technol., 361: 413 (2019). Crossref
  25. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Coat. Technol., 343: 57 (2018). Crossref
  26. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vib., 308: 855 (2007). Crossref
  27. M. O. Vasylyev, V. M. Shivanyuk, B. M. Mordyuk, I. V. Zagorulko, and S. M. Voloshko, Metallofiz. Noveishie Tekhnol., 43, No. 5: 655 (2021) (in Ukrainian).
  28. V. V. Maslov, A. G. Il'inskiy, V. K. Nosenko, A. P. Brovko, and I. K. Yevlash, Metallofiz. Noveish. Tekhnol., 22: 45 (2000) (in Russian).
  29. B. K. Nosenko, V. V. Kiril'chuk, A. P. Kochkubey, and V. Z. Balan, Metallofiz. Noveishie Tekhnol., 37, No. 2: 135 (2015) (in Russian).
  30. V. V. Maslov, V. K. Nosenko, L. E. Taranenko, and A. P. Brovko, Fiz. Met. Metalloved., 91: 47 (2001) (in Russian).
  31. V. V. Nemoshkalenko, V. V. Maslov, and V. K. Nosenko, Mater. Technol., 17, Iss. 1: 33 (2002). Crossref
  32. V. V. Nemoschkalenko, L. E. Vlasenko, A. V. Romanova, V. V. Maslov, V. K. Nosenko, A. P. Brovko, and Yu. N. Petrov, Metallofiz. Noveish. Tekhnol., 20: 22 (1998).
  33. V. V. Maslov, V. K. Nosenko, A. G. Il'inskiy, L. Ye. Vlasenko, I. K. Yevlash, Voprosy Atomnoy Nauki i Tekhniki, 1: 8 (1998) (in Russian).
  34. A. G. Ilinsky, V. V. Maslov, V. K. Nosenko, and A. P. Brovko, J. Mater. Sci., 35: 4495 (2000). Crossref
  35. A. Makino, IEEE Trans. Magn., 48, Iss. 4: 1331 (2012). Crossref
  36. Z. Zhang, P. Sharma, and A. Makino, J. Appl. Phys., 112: 103902 (2012). Crossref
  37. S. O. Bakai, O. A. Scheretskiy, K. S. Bakai, V. M. Gorbatenko, and O. I. Volchok, Problems of Atomic Science and Technology, 2 (102): 78 (2016).
  38. W. Z. Chen and P. L. Ryder, Mater. Eng., B24: 204 (1995).
  39. M. L. Trudeau and R. Schulz, Phys. Rev. Lett., 64: 99 (1990). Crossref
  40. R. Schulz, M. Trudeau, D. Dussault, and A. Van Neste, Journal de Physique Colloques, 51: C4-259 (1990). Crossref
  41. M. L. Trudeau, J. Y. Huot, R. Schulz, D. Dussault, A. Van Neste, and G. l'Esperance, Phys. Rew. Lett., 64: 4626 (1992). Crossref
  42. M. L. Trudeau, L. Dignard-Baileyt, R. Schulz, D. Dussault, and A. Van Neste, Nanostructured Materials, 2: 361 (1993). Crossref
  43. G. J. Fan, M. X. Quan, Z. Q. Hu, W. Loser, and J. Eckert, J. Mater. Res., 9: 3765 (1999).
  44. W. Lu, L. Yang, B. Yan, and W. Huang, Phys. Stat. Sol. (a), 202: 1733 (2005).
  45. B. Chena, Sh. Yang, X. Liu, B. Yan, and W. Lu, J. Alloys Comp., 234-237: 448 (2008). Crossref
  46. H. R. Gheiratmand, M. Hosseini, P. Davami, G. Ababei, and M. Song, Metall Mater. Trans. A, 46: 2718 (2015). Crossref
  47. F. Q. Guo and K. Lu, Metall Mater. Trans. A, 28: 1123 (1997). Crossref
  48. A. M. Glezer, M. R. Plotnikova, A. V. Shalimova, and S. V. Dobatkin, Izvestiya RAN. Seriya Fizicheskaya, 73: 1302 (2009) (in Russian). Crossref