Optical Absorption of a Nanocomposite with Spherical Hybrid Nanoparticles

A. V. Korotun$^{1,2}$, N. A. Smyrnova$^{1}$, I. M. Titov$^{3}$, H. M. Shylo$^{4}$

$^{1}$Zaporizhzhia Polytechnic National University, 64 Zhukovsky Str., UA-69063 Zaporizhzhya, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$UAD Systems, 84 Olexandrivska Str., UA-69002 Zaporizhzhya, Ukraine
$^{4}$Zaporizhzhya National University, 66 Zhukovsky Str., UA-69600 Zaporizhzhya, Ukraine

Received: 24.01.2023; final version - 28.02.2023. Download: PDF

The optical properties of composites consisting of inclusion particles of ‘metal core–J-aggregate shell’ structure within the dielectric matrix are investigated. Calculations of the frequency dependences of the dielectric functions of layered nanoparticles, the effective dielectric function, and the absorption coefficient of composites are carried out by using the classi-cal and dimensionally adjusted Maxwell-Garnett models of effective medium. As shown, one exciton and two hybrid plasmon–exciton modes are ex-cited in the investigated composite nanoparticles. The nature of oscillations of the real and imaginary parts of the dielectric function of layered particles in the infrared frequency range is explained. The approximate analytical model is constructed to determine the frequencies of hybrid plasmon–exciton resonances. As found out, these frequencies are significantly dependent on the metal content in the nanoparticle. The condition is defined, under which the first maximum of the imaginary part of the dielectric function of a nanoparticle falls into the infrared range of the spectrum. As shown, the frequencies of the hybrid modes of the nanocomposite depend significantly on the dimensions of the core and shell. The third maximum of the imaginary part of the effective dielectric function is located in the ultraviolet frequency range. As proved, the dimensional correction of the Maxwell-Garnett model is used, when the frequency dependences of the absorption coefficient of nanocomposite are studied, and the difference in the results of the calculation of the effective dielectric function is insignificant. The changes of the amplitude, the positions and the numbers of maxima of the imaginary parts of the dielectric functions of particles and composite as well as the absorption coefficient are traced, when the sizes and materials of the core and shell of the inclusion particles are changed. It is represented that, if the metal content is decreased in the inclusion particle, the maxima of the absorption coefficient of the composite are converged, and if the metal content is increased, then the maxima are moved apart.

Key words: effective medium approximations, optical properties of nanocomposites, hybrid plasmon–exciton resonances, absorption coefficient, effective dielectric function, spherical hybrid nanoparticles, J-aggregate.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i05/0569.html

DOI: https://doi.org/10.15407/mfint.45.05.0569

PACS: 71.35.Aa, 71.45.Gm, 73.20.Mf, 78.67.Bf, 78.67.Sc, 81.07.Pr, 82.35.Np

Citation: A. V. Korotun, N. A. Smyrnova, I. M. Titov, and H. M. Shylo, Optical Absorption of a Nanocomposite with Spherical Hybrid Nanoparticles, Metallofiz. Noveishie Tekhnol., 45, No. 5: 569—591 (2023) (in Ukrainian)


REFERENCES
  1. V. Klimov, Nanoplasmonics (Jenny Stanford Publishing: 2013). Crossref
  2. M. Sanchez-Dominguez and C. Rodriguez-Abreu, Nanocolloids: A Meeting Point for Scientists and Technologists (Amsterdam: Elsevier: 2016). Crossref
  3. M. Ruiz, Mathematical Analysis of Plasmonics Resonances for Nanoparticles and Applications. Plasmas (Université Paris Sciences et Lettres: 2017).
  4. A. Moradi, Canonical Problems in the Theory of Plasmonics. From 3D to 2D Systems (Springer-Verlag: 2020). Crossref
  5. A. O. Koval', A. V. Korotun, Yu. A. Kunyts'kyy, V. A. Tatarenko, and I. M. Titov, Ehlektrodynamika Plazmonnykh Ehfektiv u Nanomaterialakh [Electrodynamics of Plasmon Effects in Nanomaterials] (Kyiv: Naukova Dumka: 2021) (in Ukrainian).
  6. M. L. Dmytruk and S. Z. Malynych, Ukrayins'kyy Fizychnyy Zhurnal. Ohlyady, 9, No. 1: 3 (2014) (in Ukrainian).
  7. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, J. Phys. Condens. Matter., 29, No. 20: 03002 (2017). Crossref
  8. S. Y. Pokutnyy, S. D. Petrenko, and D. A. Starovoytov, Nanosistemi, Nanomateriali, Nanotehnologii, 10, No. 4: 869 (2012) (in Ukrainian).
  9. A. O. Koval', A. V. Korotun, A. A. Kryuchyn, V. M. Rubish, V. V. Petrov, and I. M. Titov, Nanofotonni Tekhnolohiyi. Suchasnyy Stan i Perspektyvy [Nanophotonic Technologies. Current State and Prospects] (Uzhhorod: FOP Sabov A. M.: 2019) (in Ukrainian).
  10. N. Karak, Nanomaterials and Polymer Nanocomposites (Amsterdam: Elsevier: 2019). Crossref
  11. Ch. M. Hussain, Handbook of Polymer Nanocomposites for Industrial Applications (Amsterdam: Elsevier: 2021).
  12. S. K. Swain and M. Jawaid, Nanostructured Polymer Composites for Biomedical Applications (Amsterdam: Elsevier: 2019).
  13. L. R. P. Kassab, S. J. L. Ribeiro, and R. Rangel-Rojo, Nanocomposites for Photonic and Electronic Applications (Amsterdam: Elsevier: 2020).
  14. Ch. Paquet and E. Kumacheva, Mater. Today, 11, No. 4: 48 (2008). Crossref
  15. M. Magnozzi, Y. Brasse, T. A. F. König, F. Bisio, E. Bittrich, A. Fery, and M. Canepa, ACS Appl. Nano Mater., 3, No. 2: 1674 (2020). Crossref
  16. Q. Zhao, W.-J. Zhou, Y.-H. Deng, Y.-Q. Zheng, Z.-H. Shi, L. Kee Ang, and Z.-K. Zhou, J. Phys. D: Appl. Phys., 55, No. 2019: 203002 (2022). Crossref
  17. J. Bellesa, C. Bonnand, J. C. Plenet, and J. Mugnier, Phys. Rev. Lett., 93, No. 3: 036404 (2004). Crossref
  18. C. Bonnand, J. Bellessa, and J. C. Plenet, J. Non-Crystalline Solids, 352, Iss. 9-20: 1683 (2006). Crossref
  19. C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, New J. Physics, 10, No. 6: 065017 (2008). Crossref
  20. N. I. Cade, T. Ritman-Meer, and D. Richards, Phys. Rev. B, 79, No. 24: 241404 (2009).
  21. N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, Langmuir, 17, No. 3: 578 (2001). Crossref
  22. T. Uwada, R. Toyota, H. Masuhara, and T. Asahi, J. Phys. Chem. C, 111, No. 4: 1549 (2007). Crossref
  23. V. S. Lebedev, A. S. Medvedev, D. N. Vasil'ev, D. A. Chubich, and A. G. Vitukhnovsky, Quant. Electron., 40, No. 3: 246 (2010). Crossref
  24. T. Sato, F. Tsugawa, T. Tomita, and M. Kawasaki, Chem. Lett., 30, No. 5: 402 (2001). Crossref
  25. J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, J. Am. Chem. Soc., 124, No. 17: 4536 (2002). Crossref
  26. G. A. Wurtz, J. Hranisavljevic, and G. P. Wiederrecht, J. Microsc., 210, No. 3: 340 (2003). Crossref
  27. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, Nano Lett., 4, No. 11: 2121 (2004). Crossref
  28. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett., 461, Iss. 4-6: 171 (2008). Crossref
  29. V. S. Lebedev, A. G. Vitukhnovsky, and A. Yoshidaetal, Colloids Surf. A, 326, No. 3: 204 (2008). Crossref
  30. J. Zhang and J. R. Lakowicz, J. Phys. Chem. B, 109, No. 18: 8701 (2005). Crossref
  31. A. S. Medvedev and V. S. Lebedev, Bullet. Lebedev Phys. Institute, 37, No. 6: 177 (2010). Crossref
  32. V. S. Lebedev and A. S. Medvedev, Quant. Electron., 42, No. 8: 701 (2012). Crossref
  33. J. C. Maxwell Garnett, Proc. R. Soc. London A, 76, No. 511: 370 (1905). Crossref
  34. O. Levy and D. Stroud, Phys. Rev. B, 56, No. 13: 8035 (1997). Crossref
  35. A. V. Korotun, A. O. Koval', and V. V. Pohosov, Ukrayins'kyy Fizychnyy Zhurnal, 66, No. 6: 518 (2021) (in Ukrainian). Crossref
  36. N. A. Smirnova, R. O. Malysh, A. V. Korotun, V. I. Reva, and I. M. Titov., J. Nano- Electron. Phys., 13, No. 5: 05010 (2021). Crossref
  37. A. V. Korotun, A. O. Koval', and V. I. Reva, J. Phys. Studies, 23, No. 2: 2604 (2019) (in Ukrainian). Crossref
  38. R. Ruppin, Opt. Commun., 182, Iss. 4-6: 273 (2000). Crossref
  39. B. I. Shapiro, Russian Chem. Rev., 75, No. 5: 433 (2006). Crossref
  40. T. Kh. Dzheyms, Teoriya Fotograficheskogo Protsessa [Theory of the Photographic Process] (Leningrad: Khimiya: 1980) (in Russian).
  41. B. I. Shapiro, Teoreticheskie Nachala Fotograficheskogo Protsessa [Theoretical Fundamentals of the Photographic Process] (Moscow: Editorial URSS: 2000) (in Russian).
  42. E. McRae and M. Kasha, J. Chem. Phys., 28, No. 4: 721 (1958). Crossref
  43. M. Kasha, Physical Processes in Radiation Biology (New York: Academic Press: 1964).
  44. B. I. Shapiro, Nanotechnol. Russ., 3: 743 (2008). Crossref
  45. T. Kobayashi, J-Aggregates (Singapore-New Jersey-London-Hong Kong: World Scientific: 1996).
  46. N. I. Grigorchuk and P. M. Tomchuk, Phys. Rev. B, 84: 085448 (2011). Crossref
  47. N. A. Smirnova, A. V. Korotun, and I. M. Titov, Metallofiz. Noveishie Tekhnol., 44, No. 5: 587 (2022) (in Ukrainian). Crossref
  48. G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (New York: Dover Publications, Inc: 2000).