First-Principle Modelling of Amorphization Process of Ni–Zr System Alloys

I. V. Plyushchay$^{1}$, A. O. Maistrenko$^{1}$, T. L. Tsaregradska$^{1}$, O. I. Plyushchay$^{2}$, O. O. Kalenyk$^{1}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 30.01.2023; final version - 08.05. Download: PDF

$Ab initio$ molecular dynamic approach is applied to analyse the amorphization process in Ni–Zr system with the control both the atomic-structure evolution and the electronic-spectra changes. The atomic positions in the Ni$_{21}$Zr$_{11}$ supercell are modelled by simulating annealing by the density functional theory in the generalized gradient approximation. Changes in the histogram of interatomic distances of the Ni$_{21}$Zr$_{11}$ supercell under ‘crystal–liquid–amorph’ phase transitions are discussed. As shown, significant variation in the local environment of the atoms (up to 30% of the mean value within the first co-ordination sphere) leads to a marked variation in the local electronic spectra for the ‘amorphous’ phase. The inapplicability of the Nagel–Tauc electronic criterion for the case of Ni–Zr-based amorphous alloys demonstrating the highest thermal stability is proved.

Key words: transition metals, phase transitions, amorphous alloys, electronic structure, $ab initio$ molecule dynamic.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i06/0733.html

DOI: https://doi.org/10.15407/mfint.45.06.0733

PACS: 61.43.Bn, 61.43.Dq, 64.70.pe, 71.15.Mb, 71.20.Be, 71.23.Cq, 81.05.Zx

Citation: I. V. Plyushchay, A. O. Maistrenko, T. L. Tsaregradska, O. I. Plyushchay, and O. O. Kalenyk, First-Principle Modelling of Amorphization Process of Ni–Zr System Alloys, Metallofiz. Noveishie Tekhnol., 45, No. 6: 733—741 (2023) (in Ukrainian)


REFERENCES
  1. K. Manukyan, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan, Chem. Eng. J., 162: 406 (2010). Crossref
  2. L. Mihailov, T. Spassov, and M. Bojinov, J. Hydrogen Energy, 37: 10499 (2012). Crossref
  3. S. Agarwal, A. Jain, P. Jain, D. Vyas, V. Ganesan, and I. P. Jain, J. Hydrogen Energy, 35: 9893 (2010). Crossref
  4. P. Jain, C. Gosselin, and J. Huot, J. Hydrogen Energy, 40: 16921 (2015). Crossref
  5. P. Jain, C. Gosselin, N. Skryabina, D. Fruchart, and J. Huot, J. Alloys Compd., 636: 375 (2015). Crossref
  6. M. Metikoš-Huković and A. Jukić, Electrochim. Acta, 45: 4159 (2000). Crossref
  7. A. Inoue and N. Nishiyama, MRS Bulletin, 32: 651 (2007). Crossref
  8. M. Ghidelli, S. Gravier, J. Blandin, T. Pardoen, J. Raskin, and F. Mompiou, J. Alloys Compd., 615: 348 (2014). Crossref
  9. H. Turnow, H. Wendrock, S. Menzel, T. Gemming, and J. Eckert, Thin Solid Films, 561: 48 (2014). Crossref
  10. Z. Altounian, Tu Guo‐hua, and J. O. Strom‐Olsen, J. Appl. Phys., 54: 3111 (1983). Crossref
  11. T. Kosorukova, V. Ivanchenko, G. Firstov, and H. Noël, Solid State Phenom., 194: 14 (2012). Crossref
  12. P. Y. Lee and C. C. Koch, J. Mater. Sci., 23: 2837 (1988). Crossref
  13. J. Jeon, G. Kim, N. Seo, H. Choi, H.-J. Kim, M.-H. Lee, H.-K. Lim, S. B. Son, and S.-J. Lee, J. Mater. Res. Technol., 16: 129 (2022). Crossref
  14. B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, J. Chem. Phys., 149, No. 13: 134501 (2018). Crossref
  15. Y. D. Dong, G. Gregan, and M. G. Scott, J. Non-Cryst. Solids, 43: 403 (1981). Crossref
  16. I. V. Plyushchay, T. L. Tsaregrads'ka, O. O. Kalenyk, and O. I. Plyushchay, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1233 (2016). Crossref
  17. Q. Yang, S. Pang, and T. Zhang, J. Univ. Sci. Technol. Beijing, Mineral, Metallurgy, Mater., 14, No. S1: 73 (2007). Crossref
  18. S. Mishra and S. Pal, Molecular Simulation, 45: 1465 (2019). Crossref
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  20. X. Gonzea, B. Amadond, P.-M. Angladee, J.-M. Beukena, F. Bottind, P. Boulangera, F. Brunevalq, D. Calistej, R. Caracasl, M. Côtéo, T. Deutschj, L. Genovesei, Ph. Ghosezk, M. Giantomassia, S. Goedeckerc, D. R. Hamannm, P. Hermetp, F. Jolletd, G. Jomardd, S. Lerouxd, M. Mancinid, S. Mazevetd, M. J. T. Oliveiraa, G. Onidab, Y. Pouillona, T. Rangela, G.-M. Rignanesea, D. Sangallib, R. Shaltafa, M. Torrentd, M. J. Verstraetea, G. Zerahd, and J. W. Zwanzigerf, Computer Phys. Comm., 180: 2582 (2009).
  21. H. B. Schlegel, J. Computational Chem., 3: 214 (1982). Crossref
  22. R. Ristić and E. Babić, J. Non-Cryst. Solids, 353: 3108 (2007). Crossref
  23. S. R. Nagel, G. B. Fisher, J. Tauc, and B. G. Bardley, Phys. Rev. B, 13: 3284 (1976).