Hydrogen-Sorption Properties of the Alloy Ti$_{15.5}$Zr$_{30}$Mn$_{38}$V$_{5.5}$Cr$_{5.5}$Co$_{5.5}$ Based on the Laves Phase (Type $C$14)

V. A. Dekhtyarenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 19.05.2023; final version - 26.07.2023. Download: PDF

Microstructure and phase composition of the cast Ti$_{15.5}$Zr$_{30}$Mn$_{38}$V$_{5.5}$Cr$_{5.5}$Co$_{5.5}$ alloy as well as the phase composition of hydrogenation and dehydrogenation products are investigated using the methods of x-ray phase analysis and scanning electron microscopy. As established, due to the partial replacement of manganese with cobalt, it is not possible to expand the area of existence of the Laves phase (type $C$14), since, in the phase composition of the studied alloy, a second intermetallic phase based on the Zr$_{2}$Co compound is formed. As determined, the change in the phase composition of the alloy does not affect significantly the kinetics of hydrogen absorption and desorption at the first sorption–desorption cycle. As established, the formed intermetallide based on the Zr$_{2}$Co compound interacts actively with hydrogen at room temperature and a hydrogen pressure of 0.23 MPa. As shown, the process of hydrogen release begins with the start of heating; at a temperature of 430°C, a reversible capacity of 95% is achieved.

Key words: Laves phase (type $C$14), intermetallic Zr$_{2}$Co, hydrogenation, dehydrogenation, hydrogen capacity.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i06/0743.html

DOI: https://doi.org/10.15407/mfint.45.06.0743

PACS: 61.05.cp, 61.66.Dk, 61.68.+n, 68.37.Hk, 68.43.Mn, 68.43.Nr, 82.80.Pv

Citation: V. A. Dekhtyarenko, Hydrogen-Sorption Properties of the Alloy Ti$_{15.5}$Zr$_{30}$Mn$_{38}$V$_{5.5}$Cr$_{5.5}$Co$_{5.5}$ Based on the Laves Phase (Type $C$14), Metallofiz. Noveishie Tekhnol., 45, No. 6: 743—755 (2023)


REFERENCES
  1. K. T. Moller, T. R. Jensen, E. Akiba, and H. W. Li, Prog. Nat. Sci.: Mater. Int., 27, Iss. 1: 34 (2017). Crossref
  2. J. B. von Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D. M. Grant, M. N. Guzik, I. Jacob, E. H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M. V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D. A. Sheppard, and M. Dornheim, Int. J. Hydrogen Energy, 44, Iss. 15: 7780 (2019). Crossref
  3. M. Hirscher, V. A. Yartys, M. Baricco, J. B. von Colbe, D. Blanchard, R. C. Bowman Jr., D. P. Broom, C. E. Buckley, F. Chang, P. Chen, Y. W. Cho, J.-C. Crivello, F. Cuevas, W. I. F. David, P. E. de Jongh, R. V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G. E. Froudakis, and C. Zlotea, J. Alloys Comp., 827: 153548 (2020). Crossref
  4. B. P. Tarasov, P. V. Fursikov, A. A. Volodin, M. S. Bocharnikov, Y. Ya. Shimkus, A. M. Kashin, V. A. Yartys, S. Chidziva, S. Pasupathi, and M. V. Lototskyy, Int. J. Hydrogen Energy, 46, Iss. 25: 13647 (2021). Crossref
  5. V. A. Dekhtyarenko, D. G. Savvakin, V. I. Bondarchuk, V. M. Shyvanyuk, T. V. Pryadko and O. O. Stasiuk, Prog. Phys. Met., 22, Iss. 3: 307 (2021). Crossref
  6. P. Zhou, Z. Cao, X. Xiao, L. Zhan, J. He, Y. Zhao, L. Wang, M. Yan, Z. Li, and L. Chen, Mater. Today Energy, 33: 101258 (2023). Crossref
  7. L. Pickering, M. V. Lototskyy, M. W. Davids, C. Sita, and V. Linkov, Mater. Today: Proc., 5: 10470 (2018). Crossref
  8. I. D. Wijayanti, R. Denys, A. A. Volodin, M. V. Lototskyy, M. N. Guzik, J. Nei, K. Young, H. J. Roven, and V. Yartys, J. Alloys Comp., 828: 154354 (2020). Crossref
  9. B. P. Tarasov, M. V. Lototskyy, and V. A. Yartys, J. Rus. Chem., L: 34 (2006) (in Russian).
  10. S. Samboshi, N. Masahashi, and S. Hanada, J. Alloys Comp., 352: 210 (2003). Crossref
  11. S. Samboshi, N. Masahashi, and S. Hanada, Acta Mater., 49: 927 (2001). Crossref
  12. H. Oesterreicher and H. Bittner, Mat. Res. Bull., 13: 83 (1978). Crossref
  13. X. Yu, B. Xia, Z. Wu, and N. Xu, Mater. Sci. Eng. A, 373: 303 (2004). Crossref
  14. A. Walnsch, M. J. Kriegel, O. Fabrichnaya, and A. Leineweber, J. Phase Equilib. Diffus., 41: 457 (2020). Crossref
  15. S. V. Mitrokhin, T. N. Smirnova, V. A. Somenkov, V. P. Glazkov, and V. N. Verbetsky, J. Alloys Comp., 356-357: 80 (2003).
  16. T. Huang, Z. Wu, G. Sun, and N. Xu, Intermetallics, 15: 593 (2007). Crossref
  17. E. A. Anikina and V. N. Verbetsky, Int. J. Hydrogen Energy, 36, Iss. 1: 1344 (2011). Crossref
  18. N. Bouaziz, M. Bouzid, and A. B. Lamine, Int. J. Hydrogen Energy, 43, Iss. 3: 1615 (2018). Crossref
  19. J. G. Park, H. Y. Jang, S. C. Han, P. S. Lee, and J. Y. Lee, Mat. Sci. Eng. A, 329-331: 351 (2002). Crossref
  20. V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, Powder Metall. Met. Ceram., 52: 340 (2013). Crossref
  21. S. V. Mitrokhin, T. N. Bezuglaya, and V. N. Verbetsky, J. Alloys Comp., 330-332: 146 (2002). Crossref
  22. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 37, No. 5: 683 (2015) (in Russian).
  23. X. B. Yu, J. Z. Chen, Z. Wu, B. J. Xia, and N. X. Xu, Int. J. Hydrogen Energy, 29, Iss. 13: 1377 (2004). Crossref
  24. K. Young, D. F. Wong, and L. Wang, J. Alloys Comp., 622: 885 (2015). Crossref
  25. T. V. Pryadko and V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 40, No. 5: 649 (2018) (in Russian).
  26. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1283 (2019).
  27. A. Narvaez, US DOE Annual Merit Review Meeting (June 18, 2014).
  28. M. V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, and V. Yartys, Prog. Nat. Sci.: Mater. Int., 27, Iss. 1: 3 (2017). Crossref
  29. M. V. Lototskyy, I. Tolj, Y. Klochko, M. W. Davids, D. Swanepoel, and V. Linkov, Int. J. Hydrogen Energy, 45, Iss. 14: 7958 (2020). Crossref
  30. H. Smithson, C. A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, and G. Ceder, Phys. Rev. B, 66: 144107 (2002). Crossref
  31. M. Hara, K. Yudou, E. Kinoshita, K. Okazaki, K. Ichinose, K. Watanabe, and M. Matsuyama, Int. J. Hydrogen Energy, 36, Iss. 19: 12333 (2011). Crossref
  32. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1053 (2021).
  33. G. F. Kobzenko and A. A. Shkola, Materials Diagnostics, 56: 41 (1990) (in Russian).
  34. T. V. Pryadko, V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1419 (2020).
  35. J. Bodega, J. F. Fernández, F. Leardini, J. R. Ares, and C. Sánchez, J. Phys. Chem. Solids, 72, Iss. 11: 1334 (2011). Crossref
  36. J. R. Johnson, J. Less Common Met., 73: 345 (1980). Crossref
  37. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Oxford: Butterworth Heinemann: 1997).
  38. D. Shaltiel, I. Jacob, and D. Davidov, J. Less Common Met., 53: 117 (1977). Crossref
  39. S. Hong and C. L. Fu, Phys. Rev. B, 66: 094109 (2002). Crossref
  40. T. A. Zotov, V. N. Verbetskii, T. Ya. Safonova, A. V. Garshev, and O. A. Petriiz, Rus. J. Electrochem., 43, No. 3: 355 (2007). Crossref
  41. V. A. Dekhtyarenko, T. V. Pryadko, D. G. Savvakin, V. I. Bondarchuk, and G. S. Mogylnyy, Int. J. Hydrogen Energy, 46, Iss. 11: 8040 (2021). Crossref
  42. S. V. Mitrokhin, J. Alloys Comp., 404-406: 384 (2005). Crossref