A Review on Additive Manufacturing Process

T. G. Avinash, K. A. Althaf, R. Varma Yadu, K. Nowshad Shabeeb, G. R. Raghav

SCMS School of Engineering and Technology, Vidya Nagar, Palissery, Karukutty, Ernakulam, 683582 Kerala, India

Received: 15.05.2023; final version - 26.07.2023. Download: PDF

The new generation of manufacturing methods that extends over subtractive type is introduced by additive manufacturing. The benefit of additive manufacturing is that it directly uses 3$D$ CAD models to create three-dimensional objects by adding more layers of material and joining them together. It is commonly utilized in the motor sector, aerospace industry, biomedical applications, prototyping, fashion such as creation of custom-made jewellery, accessories, and even clothing and many more. Additive manufacturing technology is extensively employed because of its numerous benefits, which include multimaterial goods, improved product ergonomics, on-demand manufacturing, short production runs, and so on. Various fabricating methods, which include rapid prototyping, stereolithography, electron-beam melting, fused-deposition modelling, 3$D$ printing (3$D$P), selective laser sintering, etc. Understanding the complex relationships between fundamental process parameters, flaws, and the finished product of the AM process depends heavily on mechanical testing. Because of the growing use of additive manufacturing in a variety of industries, it is critical to evaluate the mechanical performance of the components created.

Key words: additive manufacturing, mechanical properties, DMLM, EBM.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i06/0795.html

DOI: https://doi.org/10.15407/mfint.45.06.0795

PACS: 06.60.Vz, 61.25.Mv, 81.05.Bx, 81.20.Ev, 81.40.Lm, 83.50.Uv, 83.80.Sg

Citation: T. G. Avinash, K. A. Althaf, R. Varma Yadu, K. Nowshad Shabeeb, and G. R. Raghav, A Review on Additive Manufacturing Process, Metallofiz. Noveishie Tekhnol., 45, No. 6: 795—811 (2023)


REFERENCES
  1. N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, Adv. Eng. Mater., 16, No. 6: 729 (2014). Crossref
  2. M. L. Griffith and J. W. Halloran, J. Am. Ceram. Soc., 79, No. 10: 2601 (1996). Crossref
  3. E. Peng, D. Zhang, and J. Ding, Adv. Mater., 30, No. 47: 1802404 (2018). Crossref
  4. Innovative Developments in Virtual and Physical Prototyping (Ed. P. J. Bartolo) (London: CRC Press: 2011).
  5. M. D. Monzón, Z. Ortega, A. Martínez, and F. Ortega, Int. J. Adv. Manuf. Technol., 76, No. 5: 1111 (2015). Crossref
  6. R. P. Wilkerson, B. Gludovatz, J. Watts, A. P. Tomsia, G. E. Hilmas, and R. O. Ritchie, Acta Mater., 148: 147 (2018). Crossref
  7. V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, and R. Singh, Additive Manufacturing Handbook (Eds. A. B. Badiru, V. V. Valencia, and D. Liu) (Boka Raton: CRC Press: 2017), p. 251. Crossref
  8. C. Suwanpreecha and A. Manonukul, Metals, 12, Iss. 3: 429 (2022). Crossref
  9. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, Biomaterials, 31, No. 24: 6121 (2010). Crossref
  10. Y. L. Yap, C. Wang, S. L. Sing, V. Dikshit, W. Y. Yeong, and J. Wei, Precis. Eng., 50: 275 (2017). Crossref
  11. O. Gülcan, K. Günaydın, and A. Tamer, Polymers, 13, Iss. 16: 2829 (2021). Crossref
  12. M. Ziaee and N. B. Crane, Addit Manuf., 28: 781 (2019). Crossref
  13. W. Du, X. Ren, Z. Pei, and C. Ma, J. Manuf. Sci. Eng., 142, No. 4: 040801 (2020).
  14. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (New York: Springer: 2015), p. 219. Crossref
  15. N. Helfesrieder, M. Neubauer, A. Lechler, and A. Verl, Production Eng., 16: 493 (2022). Crossref
  16. D. W. Rosen, Virtual Phys. Prototyp., 11, No. 4: 305 (2016). Crossref
  17. K. V. Wong and A. A. Hernandez, International Scholarly Research Notices, 2012: 208760 (2012).
  18. M. Galati and L. Iuliano, Additive Manufacturing, 19: 1 (2018). Crossref
  19. V. Agarwal, S. Jawade, S. Atre, and O. Kulkarni, Mater. Sci. Eng. Appl., 1, No. 2: 21 (2021). Crossref
  20. J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, J. Mater. Proc. Technol., 149, Iss. 1-3: 616 (2004). Crossref
  21. S. Singh,V. S. Sharma, and A. Sachdeva, Mater. Sci. Technol., 32, No. 8: 760 (2016). Crossref
  22. A. L. Maximenko and E. A. Olevsky, Scripta Mater., 149: 75 (2018). Crossref
  23. A. Ahmed, A. Azam, M. M. A. Bhutta, F. A. Khan, R. Aslam, and Z. Tahir, Clean Environ. Syst., 3: 100042. (2021). Crossref
  24. M. Attaran, Business Horizons, 60, No. 5: 677 (2017). Crossref
  25. J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, Nature, 549: 365 (2017). Crossref
  26. I. J. Solomon, P. Sevvel, and J. Gunasekaran, Mater. Today Proc., 37: 509 (2021). Crossref
  27. R. F. Schaller, J. M. Taylor, J. Rodelas, and E. J. Schindelholz, Corrosion, 73, No. 7: 796 (2017). Crossref
  28. G. Sander, J. Tan, P. Balan, O. Gharbi, D. R. Feenstra, L. Singer, S. Thomas, R. G. Kelly, J. R. Scully, and N. Birbilis, Corrosion, 74, No. 12: 1318 (2018). Crossref
  29. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, J. Mater. Process. Technol., 249: 255 (2017). Crossref
  30. D. R. Eyers and A. T. Potter, Computers in Industry, 92-93: 208 (2017). Crossref
  31. J. Kechagias, Rapid Prototyp. J., 13. No. 5: 316 (2007). Crossref
  32. P. Patpatiya, K. Chaudhary, A. Shastri, and S. Sharma, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 236, No. 14: 7899 (2022). Crossref
  33. R. Chaudhary, P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, and C. Antonini, Progress in Additive Manufacturing, 8, No. 2: 331 (2023). Crossref
  34. M. Mehrpouya, A. Vosooghnia, A. Dehghanghadikolaei, and B. Fotovvati, Sustainable Manufacturing. Handbooks in Advanced Manufacturing (Eds. K. Gupta and K. Salonitis) (Elsevier: 2021), p. 29. Crossref
  35. M. Jiménez, L. Romero, I. A. Domínguez, M. D. M. Espinosa, M. Domínguez, Complexity, 2019: 9656938 (2019). Crossref