The Concentration Dependences of Lattice Parameters and Debye Temperature in Multicomponent Solid Solutions

I. Yu. Protsenko, M. O. Shumakova, A. K. Rylova, N. I. Shumakova

Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 19.06.2023; final version - 22.07.2023. Download: PDF

Within both the phenomenological approximation and the framework of the principle of additivity of physical quantities of a multicomponent solid solution, including high-entropy alloys, the concentration dependences of the lattice parameter and the Debye temperature are calculated. The principle of additivity can be applied to these physical quantities, since they can be considered indirectly through the radius and mass of atoms as their own, but not collective characteristics of the individual components of the alloy. It is proposed to consider the integral and differential concentration coefficients as the quantitative measures, the values and signs of which allow us to establish the influence of each alloying element, which is represented alternately by all elements of the system, on the values of the lattice parameter and the Debye temperature. The 4–6-components’ systems based on Fe, Ni, Co, Cu, Cr, Al and Ti within the equiatomic approximation are analysed.

Key words: multicomponent system, high-entropy alloys, lattice parameter, Debye temperature, principle of additivity, concentration coefficients.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i07/0857.html

DOI: https://doi.org/10.15407/mfint.45.07.0857

PACS: 02.60.Pn, 61.68.+n, 62.20.F-, 65.40.De, 68.60.-p, 71.20.-b

Citation: I. Yu. Protsenko, M. O. Shumakova, A. K. Rylova, and N. I. Shumakova, The Concentration Dependences of Lattice Parameters and Debye Temperature in Multicomponent Solid Solutions, Metallofiz. Noveishie Tekhnol., 45, No. 7: 857—864 (2023)


REFERENCES
  1. P. Szroeder, I. Y. Sagalianov, T. M. Radchenko, V. A. Tatarenko, Y. I. Prylutskyy, and W. Strupinski, Appl. Surf. Sci., 442: 185 (2018). Crossref
  2. L. V. Odnodvorets, I. Yu. Protsenko, O. P. Tkach, Yu. M. Shabelnyk, and N. I. Shumakova, J. Nano- Electron. Phys., 9, No. 2: 02021 (2017).
  3. L. V. Odnodvorets, I. Yu. Protsenko, Yu. M. Shabelnyk, M. O. Shumakova, and O. P. Tkach, J. Nano- Electron. Phys., 8, No. 3: 03034 (2016). Crossref
  4. L. V. Odnodvorets, S. I. Protsenko, O. V. Synashenko, D. V. Velykodnyi, and I. Yu. Protsenko, Cryst. Res. Technol., 44, Iss. 1: 74 (2009). Crossref
  5. S. I. Protsenko, L. V. Odnodvorets, I. Yu. Protsenko, A. K. Rylova, and D. I. Tolstikov, J. Nanomaterials, 2022: 2862439 (2022). Crossref
  6. Yiping Lu, Yong Dong, L. I. Jiang, Tingju Li, and Yong Zhang, Entropy, 17: 2355 (2015). Crossref
  7. Y. Zhang, X. Yang, and P. Liaw, JOM, 64: 830 (2012). Crossref
  8. Fizika Tverdogo Tela: Ehntsiklopedicheskiy Slovar'' (Ed. V. G. Bar'yakhtar) (Kyiv: Naukova Dumka: 1992), vol. 1 (in Russian).
  9. Fizika Tverdogo Tela: Ehntsiklopedicheskiy Slovar'' (Ed. V. G. Bar'yakhtar) (Kyiv: Naukova Dumka: 1992), vol. 2 (in Russian).
  10. I. Yu. Protsenko, L. V. Odnodvorets, N. I. Shumakova, V. S. Klochok, Yu. M. Shabelnyk, and Ya. V. Khyzhnya, J. Nano- Electron. Phys., 14, No. 6: 06031-1 (2021). Crossref
  11. Ming-Hung Tsai, Entropy, 15: 5338 (2013). Crossref
  12. Ming-Hung Tsai and Jien-Wei Yeh, Mater. Res. Lett., 2, Iss. 3: 107 (2014).