Effect of Deformation on the Electronic Properties of the W(110) Single Crystals Surface Before and After Different Types of Surface Treatment

S. V. Smolnik$^{1}$, I. M. Makeieva$^{1}$, V. M. Kolesnyk$^{1}$, M. O. Vasylyev$^{1}$, M. Ya. Shevchenko$^{1}$, I. Ye. Galstian$^{1,2}$, E. G. Len$^{1,3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institute for Solid State Research, Leibniz IFW Dresden, 20 Helmholtz Str., 01069 Dresden, Germany
$^{3}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 11.06.2023; final version - 20.09.2023. Download: PDF

The electronic states’ changes on the surface of the W(110) single crystal strained due to plastic bending are studied by the method of plasmon spectroscopy after thermal, thermochemical and ion treatments in comparison with those of analogous unstrained tungsten single crystal. The relative changes of the interplanar spaces, the concentration of the conduction electrons involved in plasma oscillations, as well as work function for electrons are calculated based on the plasmons’ energy shifts. As established, the macroscopic bending of the W(110) single crystal leads to a decrease in the work function from its convex surface, which undergoes tensile deformation. The maximal difference in the work functions for unstrained and strained single crystals is observed after all sequentially used thermal, thermochemical and ion treatments and is of 0.2 eV. The obtained results are important for the practical application of thermionic energy converters with nonplanar electrodes.

Key words: surface of tungsten single crystal, plastic deformation, plasmon spectroscopy, work function, thermionic energy converter.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i09/1083.html

DOI: https://doi.org/10.15407/mfint.45.09.1083

PACS: 68.49.Jk, 68.49.Sf, 71.45.Gm, 73.20.Mf, 79.20.Uv, 79.40.+z, 82.80.Pv

Citation: S. V. Smolnik, I. M. Makeieva, V. M. Kolesnyk, M. O. Vasylyev, M. Ya. Shevchenko, I. Ye. Galstian, and E. G. Len, Effect of Deformation on the Electronic Properties of the W(110) Single Crystals Surface Before and After Different Types of Surface Treatment, Metallofiz. Noveishie Tekhnol., 45, No. 9: 1083—1097 (2023)


REFERENCES
  1. M. F. Campbell, T. J. Celenza, F. Schmitt, J. W. Schwede, and I. Bargatin, Adv. Sci., 8: 2003812 (2021). Crossref
  2. A. V. Belkin and N. V. Schukin, Phys. Atom. Nuclei, 84: 1522 (2021). Crossref
  3. V. S. Fomenko, Ehmissionnyye Svoistva Materialov: Spravochnik [Emission Properties of Materials: Handbook] (Kiev: Naukova Dumka: 1981) (in Russian).
  4. M. O. Vasylyev, E. G. Len, V. M. Kolesnik, I. M. Makeeva, V. I. Patoka, and S. V. Smolnik, Metallofiz. Noveishie Tekhnol., 42, No. 4: 471 (2020) (in Russian). Crossref
  5. M. A. Vasylyev and V. A. Tinkov, Surface Review and Letters, 15, No. 5: 635 (2008). Crossref
  6. M. O. Vasylyev, V. M. Kolesnik, S. I. Sidorenko, S. M. Voloshko, V. V. Yanchuk, and A. K. Orlov, Metallofiz. Noveishie Tekhnol., 40, No. 7: 919 (2018) (in Ukrainian). Crossref
  7. L. V. Demchenko, A. I. Dekhtyar, and V. A. Kononenko, Metallofizika, 6, № 3: 112 (1984) (in Russian).
  8. L. V. Demchenko, A. I. Dekhtyar, and A. P. Starzhinskij, Phys. Met. Metallog., 80, No. 3: 312 (1995).
  9. A. I. Dekhtyar, V. N. Kolesnik, V. I. Patoka, and N. A. Shevchenko, Metallofiz. Noveishie Tekhnol., 23, No. 3: 335 (2001) (in Russian).
  10. V. T. Cherepin and M. A. Vasil'ev, Metody i Pribory dlya Analiza Poverkhnosti Materialov: Spravochnik [Methods and Instruments for Surface Analysis of Materials: Handbook] (Kiev: Naukova Dumka: 1982) (in Russian).
  11. G. G. Managadze, V. T. Cherepin, Y. G. Shkuratov, V. N. Kolesnik, and A. E. Chumikov, Icarus, 215, No. 1: 449 (2011). Crossref
  12. V. I. Patoka, Doslidzhennya Parametriv Vyparovuvannya Tugoplavkykh Metaliv ta Yikh Splaviv u Nadvysokomu Vakuumi [Study of Evaporation Parameters of Refractory Metals and Their Alloys in Ultrahigh Vacuum] (Disser. for Cand. Phys.-Math. Sci.) (Kyiv: G. V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2020) (in Ukrainian).
  13. M. A. Vasil'ev and S. D. Gorodetsky, Vacuum, 37: 723 (1987). Crossref
  14. V. A. Tinkov, M. A. Vasylyev, and G. G. Galstyan, Vacuum, 85: 677 (2011). Crossref
  15. I. Ya. Dekhtyar, V. N. Kolesnik, V. I. Patoka, and V. I. Silantiev, DAN USSR, Ser. A, No. 12: 1124 (1975) (in Russian).
  16. V. E. Korsukov, A. S. Luk'yanenok, and V. N. Svetlov, Poverkhnost'. Fizika, Khimiya, Mekhanika, No. 11: 28 (1983) (in Russian).
  17. D. Pines, Elementary Excitation in Solids (New York: Benjamin Press: 1963).
  18. M. A. Vasylyev, S. P. Chenakin, and V. A. Tinkov, Vacuum, 78: 19 (2005). Crossref
  19. V. V. Klimov, Nanoplasmonics (Moskva: Fizmatlit: 2010) (in Russian).
  20. E. A. Bakulin and M. M. Bredov, Fiz. Tverd. Tela, 12, No. 3: 891 (1977) (in Russian).
  21. W. Li and D. Y. Li, Phil. Mag., 84, No. 35: 3717 (2004). Crossref