Effect of Structure and Cooling Rate on Mechanical Properties and Wear Resistance of Fe–В–С Alloys

O. V. Sukhova

Institute of Transport Systems and Technologies, NAS of Ukraine, 5 Pisarzhevskoho Str., 49005, Dnipro, Ukraine

Received: 04.03.2023; final version - 13.05.2023. Download: PDF

The structural state and phase composition of Fe–B–C alloys containing 2.0–9.0% wt. В, 0.1–0.2% wt. С, Fe—balance cooled at 10–10$^{3}$ К/s are studied in this work. The methods of microscopy, quantitative metallography, and x-ray analysis are applied. Microhardness, compressive strength, coefficients of relative abrasive, and gas–abrasive wear resistance are measured. Hypereutectic Fe–B–C alloys exhibit elevated microhardness, which ensures higher resistance to abrasive wear. Hypoeutectic alloys possess enhanced compressive strength, which ascertains their higher gas–abrasive wear resistance at room temperature. The highest resistance to gas–abrasive wear at 473 K show hypereutectic alloys due to higher oxidation resistance of their structural constituents. As cooling rate increases from 10 to 10$^{3}$ K/s, structure of Fe–B–C alloys changes since lines of phase diagram are shifted towards the iron corner. A content of primary austenite increases in the hypoeutectic alloy, and a content of primary Fe$_{2}$(B,C) phase decreases in the hypereutectic alloys. Meanwhile, microhardness of the alloys increases, but compressive strength increases firstly in the range of cooling rates from 10 to 300 K/s and, then, decreases at higher rates. The hypereutectic Fe–B–C alloys containing 10–20% vol. of Fe–Fe$_{2}$(B,С) eutectics in the structure cooled at 8$\cdot$10$^{2}$–10$^{3}$ K/s exhibit the best performance properties. These alloys can be applied as filler materials for composite coatings working under abrasive and gas–abrasive wear conditions, even at temperatures up to 473 K

Key words: Fe–B–C alloys, structure, cooling rate, microhardness, compressive strength, abrasive and gas–abrasive wear resistances.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i11/1337.html

DOI: https://doi.org/10.15407/mfint.45.11.1337

PACS: 06.60.Vz, 61.72.Ff, 62.20.Qp, 68.08.De, 68.35.Ct, 81.20.Vj, 81.40.Pq

Citation: O. V. Sukhova, Effect of Structure and Cooling Rate on Mechanical Properties and Wear Resistance of Fe–В–С Alloys, Metallofiz. Noveishie Tekhnol., 45, No. 11: 1337—1348 (2023) (in Ukrainian)


REFERENCES
  1. B. O. Trembach, M. G. Sukov, V. A. Vynar, I. O. Trembach, V. V. Subbotina, O. Yu. Rebrov, O. M. Rebrova, and V. I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022).
  2. S. I. Ryabtsev, V. A. Polonskyy, and O. V. Sukhova, Mater. Sci., 56, No. 2: 263 (2020). Crossref
  3. O. V. Sukhova and V. A. Polonskyy, East Eur. J. Phys., No. 3: 5 (2020).
  4. P. A. Belonozhko, M. M. Zhechev, and S. V. Tarasov, Sov. Appl. Mech., No. 7: 683 (1986). Crossref
  5. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Vopr. Khimii Khimicheskoi Technol., No. 3: 46 (2019) (in Ukrainian).
  6. I. M. Spiridonova, E. V. Sukhovaya, and V. P. Balakin, Metallurgia, 35, No. 2: 65 (1996).
  7. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Vopr. Khimii Khimicheskoi Technol., No. 6: 77 (2018) (in Ukrainian).
  8. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1475 (2018) (in Ukrainian).
  9. A. P. Vashchenko, I. M. Spiridonova, and E. V. Sukhovaya, Metallurgia, 39, No. 2: 89 (2000).
  10. O. Sukhova and Yu. Syrovatko, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1171 (2019) (in Russian). Crossref
  11. M. P. Braun, Mikrolegirovanie Stali [Microalloying of Steel] (Kiev: Naukova Dumka: 1982) (in Russian).
  12. X. Ren, H. Fu, J. Xing, Y. Yang, and S. Tang, J. Mater. Res., 32, No. 16: 3078 (2017). Crossref
  13. A. Sudo, T. Nishi, N. Shirasu, M. Takano, and M. Kurata, J. Nuclear Sci. Technol., 52, No. 10: 1308 (2015). Crossref
  14. P. Sang, H. Fu, Y. Qu, C. Wang, and Y. Lei, Materialwissenschaft und Werkstofftechnik, 46, No. 9: 962 (2015). Crossref
  15. Z. F. Huang, J. D. Xing, S. Q. Ma, Y. M. Gao, M. Zheng, and L. Q. Sun, Key Eng. Mater., 732, No. 1: 59 (2017). Crossref
  16. L. Yu. Nazyuta, L. S. Tikhonyuk, I. N. Kostyrya, and Yu. V. Khavalits, Metal ta Lyttya Ukrayiny, Nos. 3-4: 18 (2018) (in Russian).
  17. I. M. Spiridonova, O. V. Sukhova, and A. P. Vashchenko, Metallofiz. Noveishie Tekhnol., 21, No. 2: 122 (1999) (in Russian).
  18. S. Ma and J. Zhang, Mater. Test., 58, No. 2: 127 (2016). Crossref
  19. I. M. Spiridonova, E. V. Sukhovaya, S. B. Pilyaeva, and O. G. Bezrukavaya, Metall. Min. Ind., No. 3: 58 (2002) (in Russian).
  20. E. Sigolo, J. Soyama, G. Zepon, C. S. Kiminami, W. J. Botta, and C. Bolfarini, Surf. Coat. Technol., 302, No. 1: 255 (2016). Crossref
  21. I. M. Spyrydonova, O. V. Sukhova, and G. V. Zinkovskij, Metall. Min. Ind., 4, No. 4: 2 (2012) (in Russian).
  22. J. Kim, K. Ko, S. Noh, G. Kim, and S. Kim, Wear, 267, Nos. 9-10: 1415 (2009). Crossref
  23. J. Soyama, G. Zepon, T. P. Lopes, L. Beraldo, C. S. Kiminami, W. J. Botta, and C. Bolfarini, J. Mater. Res., 31, No. 19: 2987 (2016). Crossref
  24. F. Li and L. Zhenhua, J. Alloy Compd., 587, No. 2: 267 (2014). Crossref
  25. H. G. Fu, Y. P. Lei, J. D. Xing, and L. M. Huang, Ironmak. Steelmak., 35, No. 5: 371 (2008). Crossref
  26. Z. Pala, J. Fojtikova, T. Koubsky, R. Musalek, J. Strasky, J. Capek, J. Kyncl, L. Beranek, and K. Kolarik, Powder Diffraction, 30, No. S1: S83 (2015). Crossref
  27. J. Zhang, J. Liu, H. Liao, M. Zeng, and S. Ma, J. Mater. Res. Technol., 8, No. 6: 6308 (2019). Crossref
  28. V. Homolova, L. Ciripova, and A. Vyrostkova, J. Phase Equilibria Diff., 36, No. 6: 599 (2015).
  29. O. V. Sukhova, Phys. Chem. Solid State, 22, No. 1: 110 (2021). Crossref
  30. Z. Lv, H. Fu, J. Xing, and S. Ma, J. Alloys Comp., 662, No. 1: 54 (2016). Crossref
  31. H. Fu and Z. Jiang, Acta Metall. Sin., 42, No. 5: 545 (2006).
  32. O. V. Sukhova, Phys. Chem. Solid State, 21, No. 2: 355 (2020). Crossref
  33. J. Zhang, Y. Gao, J. Xing, X. Wei, S. Ma, and B. Che, Tribol. Trans., 56, No. 3: 461 (2013). Crossref
  34. O. Culha, S. Sahin, I. Ozdemir, and M. Toparli, Experimental Techniques, No. 3: 43 (2011).
  35. O. V. Sukhova, PAST, 128, No. 4: 77 (2020). Crossref
  36. J. Zhang, Y. Gao, J. Xing, S. Ma, D. Yi, and L. Liu, J. Mater. Eng. Perform., 20, No. 9: 1658 (2011). Crossref
  37. O. V. Sukhova and K. V. Ustinova, Funct. Mater., 26, No. 3: 495 (2019).
  38. I. M. Spyrydonova, S. B. Pilyaeva, E. V. Sukhovaya, and G. V. Zinkovskyy, Visnyk Dniprovs'kogo Universytetu. Fizyka. Radioehlektronika, No. 8: 32 (2002) (in Russian).