Electronic Structure of Aluminium Nitride and Its Solid Solutions with Oxygen and Aluminium

V.  M. Uvarov, E. M. Rudenko, Yu. V. Kudryavtsev, M. V. Uvarov, I. V. Korotash, M. V. Dyakin

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 22.08.2023; final version - 22.08.2023. Download: PDF

Using band-structure calculations within the FLAPW (Full-Potential Linearized Augmented-Plane-Wave) model, information is obtained regarding the energy, charge and spatial characteristics of aluminium nitride and its solid solutions with oxygen and aluminium. As established, the formation of these solutions is accompanied by a reduction in electron density in their interatomic regions. The accompanying decrease in the covalence of interatomic interactions leads to both a reduction in binding energies and an increase in the volumes of elementary cells within the compounds. The transition from aluminium nitride to its energetically ‘nearest’ oxide is accompanied by a decrease in binding energy by 1.25 eV, which corresponds to over 14.5$\cdot10^{3}$ K on the temperature scale. This correlation underscores the high resistance of aluminium nitride to oxidation processes. The formation of an alloy with aluminium incorporation becomes even less likely due to the larger decrease in binding energy by 2.84 eV.

Key words: band-structure calculations, alloys, band structure, aluminium nitride, solid solutions.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i03/0199.html

DOI: https://doi.org/10.15407/mfint.46.03.0199

PACS: 61.50.Lt, 71.15.Ap, 71.15.Mb, 71.15.Nc, 71.20.Nr, 71.27.+a, 81.05.Zx

Citation: V.  M. Uvarov, E. M. Rudenko, Yu. V. Kudryavtsev, M. V. Uvarov, I. V. Korotash, and M. V. Dyakin, Electronic Structure of Aluminium Nitride and Its Solid Solutions with Oxygen and Aluminium, Metallofiz. Noveishie Tekhnol., 46, No. 3: 199—210 (2024)


REFERENCES
  1. A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering, and W. G. Moore, J. Am. Ceram. Soc., 77: 3 (1994). Crossref
  2. A. V. Virkar, T. B. Jackson, and R. A. Cutler, J. Am. Ceram. Soc., 72: 2031 (1989). Crossref
  3. T. J. Mroz, Jr., Am. Ceram. Soc. Bull., 71: 782 (1992).
  4. P. T. B. Shaffer and T. J. Mroz, Jr., Aluminum Nitride (Advanced Refractory Technology, Inc., 1991).
  5. A. Glen, R. A. Slack, R. Tanzilli, O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids, 48: 141 (1987).
  6. O. Ye. Pogorelov, O. V. Filatov, E. M. Rudenko, I. V. Korotash, and M. V. Dyakin, Progress in Physics of Metals, 24, No. 2: 239 (2023). Crossref
  7. E. M. Rudenko, A. O. Krakovnyy, M. V. Dyakin, I. V. Korotash, D. Yu. Polots'kyy, and M. A. Skoryk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 989 (2022) (in Ukrainian). Crossref
  8. A. Siegel, K. Parlinski, and U. D. Wdowik, Phys. Rev. B, 74, 104116 (2006). Crossref
  9. G. R. Kline and K. M. Lakin, Appl. Phys. Lett., 43, 750 (1983). Crossref
  10. H. Vollstadt, E. Ito, M. Akaishi, S. Akimoto, and O. Fukunaga, Proc. Japan Acad., 66, Ser. B: 7 (1990). Crossref
  11. I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman, and J.-E. Sundgren, Appl. Phys. Lett., 60: 2491 (1992). Crossref
  12. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10: 1237(1992). Crossref
  13. E. Ruiz, S. Alvarez, and Pere Alemany, Phys. Rev. B, 49: 7115 (1994). Crossref
  14. Fedir Sizov, Zinoviia Tsybrii, Ihor Korotash, and Eduard Rudenko, IR Blocking and Transparent in Visible and THz Filters // LAP LAMBERT Academic Publishing; Published on: 2018-08-10. 88 p. ISBN-13: 978-613-9-89803-9.
  15. E. Rudenko, Z. Tsybrii, F. Sizov, I. Korotash, D. Polotskiy, M. Skoryk, M. Vuichyk, and K. Svezhentsova, J. Appl. Phys., 121, No. 13: 135304 (2017). Crossref
  16. Z. Tsybrii, F. Sizov, M. Vuichyk, I. Korotash, and E. Rudenko, Infrared Phys. Technol., 107: 103323 (2020). Crossref
  17. Q. Xia, H. Xia, and A. L. Ruoff, J. Appl. Phys., 73: 8193 (1993). Crossref
  18. M. Durandurdu, J. Alloys and Compd., 480: 917 (2009). Crossref
  19. L. Hultman, S. Benhenda, G. Radnoczi, J.-E. Sundgren, J. E. Greene, and I. Petrov, Thin Solid Films, 215: 152 (1992). Crossref
  20. M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B, 45: 10123 (1992). Crossref
  21. S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, and K. Takemura, J. Phys. Chem. Solids, 58: 2093 (1997). Crossref
  22. E. Gabe, Y. LePage, and S. L. Mair, Phys. Rev. B, 24: 5634 (1981). Crossref
  23. C. Carlone, K. M. Lakin, and H. R. Shanks, J. Appl. Phys., 55: 4010 (1984). Crossref
  24. A. T. Collins, E. C. Lightowlers, and P. J. Dean, Phys. Rev., 158: 833 (1967). Crossref
  25. V. A. Fomichev, Fiz. Tverd. Tela (Leningrad), 10, 763 (1968) [Sov. Phys. Solid. State, 10: 597 (1968)].
  26. R. V. Kasowski and F. S. Ohuchi, Phys. Rev. B, 35: 9311 (1987). Crossref
  27. M. Gautier, J. P. Duraud, and C. Le Gressus, Surf. Sci., 178: 201 (1986). Crossref
  28. K. Tsubouchi, K. Sugai, and N. Mikoshiba, In 1981 Ultrasonics Symposia Proceedings, edited by B. R. McAvoy (IEEE, New York, 1981), p. 375.
  29. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys., 44: 292 (1973). Crossref
  30. B. Hejda, Phys. Status Solidi, 32: 407 (1969). Crossref
  31. S. Bloom, J. Phys. Chern. Solids, 32: 2027 (1971). Crossref
  32. D. Jones and A. H. Lettington, Solid State Commun., 11: 701 (1972). Crossref
  33. W. Y. Ching and B. N. Harmon, Phys. Rev. B, 34: 5305 (1986). Crossref
  34. A. Kobayashi, O. Sankey, S. M. Yolz, and J. D. Dow, Phys. Rev. B, 28: 935 (1983). Crossref
  35. L. M. Goldman, R. Twedt, S. Balasubramanian, and S. Sastri, Proc. SPIE, 8016 (2011).
  36. J. W. McCauley, P. Patel, M. W. Chen, G. Gilde et al, J. Eur. Ceram. Soc., 29: 223 (2009). Crossref
  37. H. Li, P. Mina, N. Songa, A. Zhanga et al, Ceram. Int., 45: 8188 (2019).
  38. E. M. Rudenko, V. Ye. Panarin, P. O. Kyrychok, M. Ye. Svavilnyi, I. V. Korotash, O. O. Palyukh, D. Yu. Polotskyi, and R. L. Trishchuk, Progress in Physics of Metals, 20, No. 3: 485 (2019). Crossref
  39. V. F. Semenyuk, E. M. Rudenko, I. V. Korotash, L. S. Osipov, D. Yu. Polotskiy, K. P. Shamray, V. V. Odinokov, G. Ya. Pavlov, and V. A. Sologub, Metallofiz. Noveishie Tekhnol., 33, No. 2: 223 (2011).
  40. V. F. Semenyuk, V. F. Virko, I. V. Korotash, L. S. Osipov, D. Yu. Polotsky, E. M. Rudenko, V. M. Slobodyan, and K. P. Shamrai, Probl. At. Sci. Technol., 4: 179 (2013).
  41. C. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B, 46: 10086 (1992). Crossref
  42. D. Singh, Planewaves, Pseudopotentials and LAPW Method (Boston: Kluwer Academic: 1994). Crossref
  43. J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett., 77 (1996). Crossref
  44. P. Blaha, K. Schwarz, G. K. Madsen et al., An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz Techn. Universiteit: 2001).
  45. http://www.wien2k.at/reg_user/faq/
  46. J. Murrel, S. Kettle, and J. Tedder, Teoriya Valentnosti [Theory of Valence] (Moskva: Mir: 1968).