Mechanical Stability and Brittleness of Metals and Alloys. Pt. 2. The Role of Mechanical Properties

Yu. Ya. Meshkov, G. P. Zimina

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 11.07.2023; final version - 15.07.2023. Download: PDF

Regularities of the influence of strength and ductility of steels on the embrittlement effect of stress raisers (SR) as fatigue cracks in standard specimens for determining the fracture toughness of metals and alloys are ascertained. Special indices proposed in Pt. 1 of this report are used for this analysis, namely: strength margin, $B_{r}$, and the effective coefficient of stress raise, $\alpha_{ef}$. As shown, an excess of $\alpha_{ef}$ over $B_{r}$ is the condition for mechanical instability of metal (brittleness) under the SR influence; this means fracture of the specimen with SR at the average stress that does not exceed the yield strength of metal, $\sigma_{0.2}$.Regularities are found for the effect of strength, $\sigma_{0.2}$, on indices of strength margin, $B_{r}$, and the value of the effective stress raise coefficient, $\alpha_{ef}$, due to an increase in strength of steels, $\sigma_{0.2}$, within the range 140-500 MPa (as a result of decrease in temperature) and within the range 140-2200 MPa at room temperature (as a result of changing the chemical composition of steel and heat treatment). As established, the SR destructive effect, $\alpha_{ef}$, is governed directly by the value of strength margin, $B_{r}$, which, in turn, is related to the strength characteristic, $\sigma_{0.2}$. Thus, ductility reduces SR embrittlement effect, $\alpha_{ef}$, not by itself, but against the background of yield strength, $\sigma_{0.2}$, more strongly for low-strength steels and less strongly for high-strength steels.

Key words: strength, strength margin, mechanical stability, brittleness, stresses’ raiser.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i04/0355.html

DOI: https://doi.org/10.15407/mfint.46.04.0355

PACS: 46.32.+x, 46.50.+a, 62.20.fk, 62.20.mj, 62.20.mm, 62.20.mt, 81.40.Np

Citation: Yu. Ya. Meshkov and G. P. Zimina, Mechanical Stability and Brittleness of Metals and Alloys. Pt. 2. The Role of Mechanical Properties, Metallofiz. Noveishie Tekhnol., 46, No. 4: 355—369 (2024) (in Ukrainian)


REFERENCES
  1. Yu. Ya. Meshkov and G. P. Zimina, Metallofiz. Noveishie Tekhnol., 45, No. 8: 1029 (in Ukrainian). Crossref
  2. V. N. Gryshchenko, Yu. Ya. Meshkov, Yu. A. Polushkin, and A. V. Shiyan, Metallofiz. Noveishie Tekhnol., 37, No. 7: 961 (2015) (in Russian). Crossref
  3. Yu. Ya. Meshkov and A. V. Shiyan, Stal', No. 4: 46 (2018) (in Russian).
  4. Yu. Ya. Meshkov and A. V. Shiyan, Stal', No. 12: 52 (2019) (in Russian).
  5. A. V. Shiyan and Yu. Ya. Meshkov, Metallofiz. Noveishie Tekhnol., 41, No. 6: 775 (2019) (in Russian). Crossref
  6. R. Peterson, Koehffitsienty Kontsentratsii Napryazheniy [Stress Concentration Factors] (Moskva: Mir: 1977) (in Russian).
  7. G. N. Savin and V. I. Tul'chin, Spravochnik po Kontsentratsii Napryazheniy [Handbook of Stress Concentration] (Kiev: Vyshcha Shkola: 1976) (in Russian).
  8. Yu. Ya. Meshkov and G. A. Pakharenko, Struktura Metalla i Khrupkost' Stal'nykh Izdeliy [Metal Structure and Brittleness of Steel Products] (Kiev: Naukova Dumka: 1985) (in Russian).
  9. Yu. Ya. Meshkov, S. A. Kotrechko, and A. V. Shiyan, Mekhanicheskaya Stabil'nost' Metallov i Splavov [Mechanical Stability of Metals and Alloys] (Kiev: Naukova Dumka: 2014) (in Russian).
  10. A. V. Shiyan, Fizicheskaya Priroda Lokalnogo Napryazheniya Khrupkogo Razrusheniya Staley i Svarnykh Shvov [The Physical Nature of the Local Stress of Brittle Fracture of Steels and Welds] (Thesis of Disser. for Cand. Phys.-Math. Sci.) (Kiev: Institute for Metal Physics, Academy of Sciences of Ukr.SSR: 1990) (in Russian).
  11. A. V. Shiyan, Yu. Ya. Meshkov, and Yu. A. Polushkin, Stal', No. 6: 39 (2019) (in Russian).
  12. Rashchyoty i Ispytaniya na Prochnost'. Metody Mekhanicheskikh Ispytaniy Metallov. Opredelenie Kharakteristik Treshchinostoykosti (Viazkosti Razrusheniya) pri Staticheskom Nagruzhenii. GOST 25.506-85 (Moskva: Izdatel'stvo Standartov: 1985) (in Russian).
  13. Metally. Metody Ispytaniya na Udarnyi Izgib pri Ponizhennykh, Komnatnoy i Povyshennykh Temperatyrakh [Metals. Impact Test Method at Low, Room, and High Temperatures], GOST 9454-78 (Moskva: Izdatel'stvo Standartov: 1978) (in Russian).
  14. Yu. Ya. Meshkov and G. P. Zimina, Metallofiz. Noveishie Tekhnol., 44, No. 6: 807 (2022) (in Ukrainian). Crossref
  15. P. F. Koshelev and S. E. Belyaev, Prochnost' i Plastichnost'Konstruktsionnykh Materialov pri Nizkikh Temperaturakh [Strength and Plasticity of Structural Materials at Low Temperatures] (Moskva: Metallurgiya: 1967) (in Russian).
  16. J. Knott, Phil. Trans. R. Soc. A, 373: 20140126. Crossref