Crystallographic Aspects of the Formation and Development of Deformation Relief as an Indicator of Accumulated Fatigue Damage (Review of Sources)

T. P. Maslak$^{1}$, S. R. Ignatovych$^{1}$, M. V. Karuskevych$^{1}$, O. M. Karuskevych$^{1}$, T. V. Turchak$^{2}$

$^{1}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 28.03.2024; final version - 06.05.2024. Download: PDF

The paper involves reviewing researches, which consider crystallographic aspects of fatigue damage in both metallic polycrystals and single crystals. The primary aim of this work is to substantiate the necessity and feasibility of considering both material texture in polycrystals and the crystallographic orientation of single crystals during the assessment of equivalent stresses under multiaxial loading. Additionally, the study aims to assess quantitatively the accumulated fatigue damage. The tasks undertaken include as follow: analysing contemporary research investigating cases, where surface deformation relief in metals serves as an indicator of accumulated fatigue damage, examining crystallography; studying the surface relief components, and estimating how the texture of constructional metals influences the formation of deformation relief and corresponding fatigue damage. The study provides evidence for the activation of additional slip systems during biaxial loading. It is noted that the Huber–Mises method for assessing equivalent stresses during biaxial loading does not account for anisotropy in constructional materials, such as aluminium alloys commonly used in aviation. Methodologically, the paper considers mechanical tests, light microscopy, x-ray analysis. The main result of the study is the substantiation of the need to consider metals’ crystallographic anisotropy, when calculating equivalent stresses under multiaxial loading. The review of research indicates that the fatigue-damage accumulation and the evolution of surface deformation relief are related closely to the crystallographic orientation of single crystals and crystallites in textured polycrystal materials. Recognizing these crystallographic aspects is essential for thorough estimating accumulated fatigue damage. It demonstrates the necessity and feasibility of considering crystallographic aspects in the development of methods for estimating accumulated fatigue damage. The effect of both the crystallographic orientation of single crystals and the texture of polycrystalline material is pronounced under the uniaxial and biaxial loadings.

Key words: metal fatigue, deformation relief, crystallography of slip, uniaxial loading, multiaxial loading, equivalent stress.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i07/0649.html

DOI: https://doi.org/10.15407/mfint.46.07.0649

PACS: 46.50.+a, 61.72.Lk, 62.20.F-, 62.20.me, 81.40.Lm, 81.40.Np, 81.70.Bt

Citation: T. P. Maslak, S. R. Ignatovych, M. V. Karuskevych, O. M. Karuskevych, and T. V. Turchak, Crystallographic Aspects of the Formation and Development of Deformation Relief as an Indicator of Accumulated Fatigue Damage (Review of Sources), Metallofiz. Noveishie Tekhnol., 46, No. 7: 649—661 (2024) (in Ukrainian)


REFERENCES
  1. J. C. Balthazar and L. Malcher, Proc. of the Int. Symposium on Solid Mechanics (March 5-7, 2007, São Paulo), p. 63.
  2. A. Karolczuk and E. Macha, Int. J. Fracture, 134: 267 (2005). Crossref
  3. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS25. Amendment 26 (European Union Aviation Safety Agency: 2020).
  4. R. V. Mises, Math.-Phys. Klasse, 1913: 582 (1913).
  5. M. T. Huber, Arch. Mech., 56: 173 (2004).
  6. M. Karuskevich, O. Karuskevich, T. Maslak, and S. Schepak, Int. J. Fatigue, 39: 116 (2012). Crossref
  7. M. Karuskevich and T. Maslak, Fatigue and Fracture Eng. Mater. Structures, 44, Iss. 10: 2913 (2021). Crossref
  8. Ł. Pejkowski, M. Karuskevich, and T. Maslak, Fatigue Fracture Eng. Mater. Structures, 42, Iss. 10: 2315 (2019). Crossref
  9. O. E. Zasimchuk, M. G. Chausov, B. M. Mordyuk, O. I. Baskova, V. I. Zasimchuk, T. V. Turchak, and O. S. Gatsenko, Progress in Physics of Metals, 22, No. 4: 619 (2021). Crossref
  10. O. Zasimchuk, T. Turchak, and N. Chausov, Results Mater., 6: 100090 (2020). Crossref
  11. T. Maslak and M. Karuskevich, Fatigue Fracture Eng. Mater. Structures, 46, Iss. 3: 1211 (2023). Crossref
  12. P. J. E. Forsyth, Nature, 171: 172 (1953). Crossref
  13. J. A. Ewing and J. C. W. Humfrey, Phil. Trans. Royal Society A. Math., Phys. Eng. Sci., 200: 241 (1903). Crossref
  14. H. N. Hahn and D. J. Duquette, Acta Metall., 26, Iss. 2: 279 (1978). Crossref
  15. P. Lukáš, M. Klesnil, and J. Krejči, Basic Solid State Phys., 27, Iss. 2: 545 (1968). Crossref
  16. N. Thompson, N. J. Wadsworth, and N. Louat, Phil. Mag., 1, Iss. 2: 113 (1956). Crossref
  17. P. Lukáš and M. Klesnil, phys. status solidi, 37, Iss. 2: 833 (1970). Crossref
  18. J. Polák, Crystals, 13, No. 2: 220 (2023). Crossref
  19. T. Babinský, I. Kuběna, I. Šulák, T. Kruml, and J. Polák, Mater. Sci. Eng. A, 819: 141520 (2021). Crossref
  20. V. M. Goritskiy and V. F. Terent'ev, Struktura i Ustalostnoye Razrushenie Metallov [Structure and Fatigue Failure of Metals] (Moskva: Metallurgiya: 1980) (in Russian).
  21. E. Schmid and W. Boas, Plasticity of Crystals (London: F. A. Hughes and Co. Limited: 1950).
  22. Ye. O. Nemanezhyn, H. I. L'vov, and Yu. I. Torba, Aviatsiyno-Kosmichna Tekhnika i Tekhnolohiya, No. 4, Suppl. 2 (182): 42 (2022) (in Ukrainian). Crossref
  23. E. E. Zasimchuk, R. G. Gontareva, M. V. Karuskevich, I. K. Zasimchuk, and Y. G. Gordienko, Proc. Conf. 'Materials Structure and Micromechanics of Fracture (MSMF-3)' (Brno: 2001), p. 232.
  24. O. Lohne, phys. status solidi (a), 25, Iss. 2: 709 (1974). Crossref
  25. M. Hayashi, Int. J. Fatigue, 156: 106661 (2022). Crossref
  26. T. Kleiser and M. Bocek, Int. J. Mater. Research, 77, Iss. 9: 582 (1986). Crossref
  27. Yu. Gordienko, E. Zasimchuk, and M. Karuskevich, Proc. Seventh Conf. Sensors and Their Applications (Dublin: 1995), p. 387.
  28. M. V. Karuskevich, Fizyko-khimichna Mekhanika Materialiv, 47, No. 5: 48 (2011) (in Ukrainian).
  29. M. A. Tschopp, B. B. Bartha, W. J. Porter, P. T. Murray, and S. B. Fairchild, Metall. Trans., 40: 2363 (2009). Crossref
  30. A. D. Kammers and S. Daly, Exp. Mech., 53: 1743 (2013). Crossref
  31. W. Z. Abuzaid, M. D. Sangid, and J. D. Carroll, J. Mech. Phys. Solids, 60, Iss. 6: 1201 (2012). Crossref
  32. W. F. Hosford, Mechanical Behavior of Materials (Cambridge University Press: 2010).
  33. Von Gunter Wassermann und Johanna Grewen, Tekstury Metallicheskikh Materialov [Texturen metallischer Werkstoffe] (Moskva: Metallurgiya: 1969) (Russian translation).
  34. A. I. Radchenko, Voprosy Ehkspluatatsionnoy Dolgovechnosti i Zhivuchesti Konstruktsiy Letatel'nykh Apparatov [Questions of Operational Durability and Survivability of Aircraft] (Kyiv: KIIGA: 1982), p. 3 (in Russian).
  35. A. Y. Radchenko and S. S. Yutskevych, Nadiynist' i Dovhovichnist' Mashyn i Sporud, Iss. 38: 105 (2014) (in Ukrainian).
  36. S. R. Lin and T. H. Lin, J. Mech. Phys. Solids, 22, Iss. 3: 177 (1974). Crossref
  37. S. Kalluri and P. J. Bonacuse, Advances in Multiaxial Fatigue (Eds. D. L. McDowell and J. R. Ellis) (ASTM International: 1993).
  38. M. Karuskevich, T. Maslak, and Ł. Pejkowski, Proc. Int. Sci. Techn. Conf. 'In-Service Damage of Materials, Its Diagnostics and Prediction' (Ternopil: 2019), p. 116.