Effect of Intense Ultrasonic Impact Treatment on the Microstructure and Mechanical Properties of the Surface of the Co–Cr–Mo–W Alloy Obtained by Means of the Selective Laser Melting of the Powder

S. M. Voloshko$^{1}$, A. P. Burmak$^{1}$, I. A. Vladymyrskyi$^{1}$, B. M. Mordyuk$^{2}$, M. O. Vasyl’yev$^{2}$, V. I. Zakiyev$^{3}$, M. M. Voron$^{1,4}$, P. O. Huryn$^{5}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Ave., UA-03056 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine
$^{4}$Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{5}$P. L. Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., UA-04112 Kyiv, Ukraine

Received: 15.05.2024; final version - 06.06.2024. Download: PDF

The mechanical characteristics, phase composition, residual macroscopic stresses, and surface topography of Co–Cr–Mo–W alloy fabricated using the additive (selective laser melting of powder—SLM) and casting (CT) technologies and modified by ultrasonic impact treatment (UIT) are investigated. A single-contact normal impact-loading mode of UIT is employed. As demonstrated, the macrodefects, including defects of incomplete melting, pores, significant surface roughness, and high levels of residual tensile stresses, which are inherent consequences of 3$D$ printing, are effectively eliminated by short-term UIT in an inert environment. A correlation between the mechanical properties of modified surface layers of the SLM and CT samples and their structural–phase state after UIT exposure for 50 s is established. The strengthening effect of the surface layer of the additively manufactured Co–Cr–Mo–W alloy (by 2 times) is due to the formation of compressive stresses of the first kind (-600 MPa) and martensitic transformation. The Co–Cr–Mo–W alloy obtained by casting technology has lower hardness both in the initial state and after UIT. The strengthening effect does not exceed 1.7 times and is achieved due to a higher level of compressive stresses (-900 MPa) and carbide component refinement.

Key words: 3$D$ printing, selective laser melting, ultrasonic impact treatment, Co–Cr–Mo–W alloy, structure, phase composition, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i07/0679.html

DOI: https://doi.org/10.15407/mfint.46.07.0679

PACS: 43.35.+d, 61.72.Ff, 81.20.Ev, 81.30.Kf, 81.65.-b, 83.10.Tv, 87.85.jj

Citation: S. M. Voloshko, A. P. Burmak, I. A. Vladymyrskyi, B. M. Mordyuk, M. O. Vasyl’yev, V. I. Zakiyev, M. M. Voron, and P. O. Huryn, Effect of Intense Ultrasonic Impact Treatment on the Microstructure and Mechanical Properties of the Surface of the Co–Cr–Mo–W Alloy Obtained by Means of the Selective Laser Melting of the Powder, Metallofiz. Noveishie Tekhnol., 46, No. 7: 679—704 (2024) (in Ukrainian)


REFERENCES
  1. V. I. Bida, V. I. Struk, and Yu. I. Zabuta, Zbirnyk Naukovykh Prats' Spivrobitnykiv NMAPO im. P. L. Shupyka, 22: 370 (2013) (in Ukrainian).
  2. M. M. Rozhko and V. P. Nespryad'ko, Ortopedychna Stomatolohiya [Orthopaedic Dentistry] (Kyiv: Knyha Plyus: 2013) (in Ukrainian).
  3. W. Riaz, A. Ayesha, and S. Aziz, Professional Med. J., 25: 1261 (2018). Crossref
  4. M. A. Vasil'ev, V. S. Filatova, and P. A. Gurin, Zhurnal Funktsional'nykh Materialov, 1, No. 2: 42 (2007) (in Russian).
  5. M. O. Vasyl'yev, V. S. Filatova, P. O. Hurin, and L. F. Yatsenko, Litopys Travmatolohiyi ta Ortopediyi, Nos. 1-2 (29-30): 243 (2014) (in Ukrainian).
  6. L. Porojan, C. E. Savencu, L. V. Costea, M. L. Dan, and S. D. Porojan, Int. J. Electrochem. Sci., 13: 410 (2018).
  7. S. Mercieca, M. C. Conti, J. Buhagiar, and J. Camilleri, J. Appl. Biomater. Funct., 16, Iss. 1: 47 (2018). Crossref
  8. M. Wylie, R. M. Shelton, G. J. P. Fleming, and A. J. Davenport, Dent. Mater., 23: 714 (2007). Crossref
  9. W. C. Chen, F. Y. Teng, and C. C. Hung, Mater. Sci. Eng. C, 35: 231 (2014). Crossref
  10. K. J. Anusavice, R. W. Phillips, C. Shen, N. D. Rawls, and H. R. Phillips, Science of Dental Materials (Elsevier: 2013).
  11. J. M. Powers and J. C. Wataha, Dental Materials: Foundations and Applications (Publisher Mosby: 2016).
  12. J. M. Powers, J. C. Wataha, Y.-W. Chen, and R. G. Craig, Dental Materials: Foundations and Applications (Elsevier: 2017).
  13. R. Rudolf, P. Majerič, and V. Lazic, Advanced Dental Metallic Materials (Springer: 2024). Crossref
  14. A. Yu. Kordiyak, Visnyk Stomatolohiyi, No. 2: 135 (1996) (in Ukrainian).
  15. M. O. Vasylyev, I. M. Makeeva, and P. O. Gurin, Progress in Physics of Metals, 20: 310 (2019). Crossref
  16. Youssef S. Al Jabbari, J. Advanced Prosthodontics, 6: 138 (2014). Crossref
  17. H. R. Kim, S. H. Jang, Y. K. Kim, J. S. Son, B. K. Min, K. H. Kim, and T. Y. Kwon, Materials, 9: 96 (2016).
  18. F. J. Gil, E. Fernandez, J. M. Manero, and J. A. Planell, Bio-Medical Mater. Eng., 5: 161 (1995). Crossref
  19. H. Nesse, D. M. A. Ulstein, M. M. Vaage, and M. Filo, J. Prosthet. Dent., 114: 686 (2015). Crossref
  20. E.-H. Kim, D.-H. Lee, S.-M. Kwon, and T.-Y. Kwon, J. Prosthet. Dent., 117: 393 (2016).
  21. R. Van Noort and M. Barbour, Introduction to Dental Materials (Elsevier: 2013).
  22. X. P. Tan, Y. J. Tan, C. S. L. Chow, S. B. Tor, and W. Y. Yeong, Mater. Sci. Eng. C, 76: 1328 (2017). Crossref
  23. P. Wu, J. Wang, and X. G. Wang, Automation in Construction, 68: 21 (2016). Crossref
  24. B. Bhushan and M. Caspers, Microsyst. Technol., 23: 1117 (2017). Crossref
  25. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Composites. Part B: Eng., 143: 172 (2018). Crossref
  26. M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, and P. O. Gurin, Progress in Physics of Metals, 23: 337 (2022). Crossref
  27. E. D. Rekow, Dental Mater., 36: 9 (2020). Crossref
  28. T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M. A. Rifaiy, and Y. S. Al Jabbari, J. Prosthodont., 24, Iss. 4: 303 (2015). Crossref
  29. K. P. Krug, A. W. Knauber, and F. P. Nothdurft, Clin. Oral Investig., 19: 401 (2015). Crossref
  30. M. Revilla-Leyn and M. Özcan, Curr. Oral Health Rep., 4: 201 (2017). Crossref
  31. Y. Cao, Y. Zhang, W. Ming, W. He, and J. Ma, Metals, 13: 398 (2023). Crossref
  32. A. P. Burmak, S. M. Voloshko, B. M. Mordyuk, M. O. Vasyl'yev, V. I. Zakiyev, M. M. Voron, and P. O. Huryn, Metallofiz. Noveishie Tekhnol., 45, No. 7: 909 (2023) (in Ukrainian).
  33. F. Y. Liao, G. Chen, C. X. Gao, and P. Z. Zhu, Adv. Eng. Mater., 4: 1801013 (2019).
  34. M. O. Vasyl'yev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 39, No. 1: 49 (2017) (in Ukrainian).
  35. Yu. N. Petrov, G. I. Prokopenko, B. N. Mordyuk, M. A. Vasylyev, S. M. Voloshko, V. S. Skorodzievski, and V. S. Filatova, Mater. Sci. Eng. C, 58: 1024 (2016). Crossref
  36. S. P. Chenakin, B. M. Mordyuk, N. I. Khripta, and V. Yu. Malinin, Metallofiz. Noveishie Tekhnol., 45, No. 9: 1109 (2023). Crossref
  37. C. Balagna, S. Spriano, and M. G. Faga, Mater. Sci. Eng. C, 32: 1868 (2012). Crossref
  38. I. Zakiev, M. Storchak, G. A. Gogotsi, V. Zakiev, and Y. Kokoieva, Ceramics Int., 47, Iss. 21: 29638 (2021). Crossref
  39. M. Storchak, I. Zakiev, V. Zakiev, and A. Manokhin, Measurement, 191: 110745 (2022). Crossref
  40. V. Zakiev, A. Markovsky, E. Aznakayev, I. Zakiev, and E. Gursky, Congress on Optics and Optoelectronics (August 25-Sept. 2, 2005, Warsaw).
  41. P. Huang and H. F. Lopez, Mater. Lett., 39: 249 (1999). Crossref
  42. Y. Bedolla-Gil, A. Juarez-Hernandez, A. Perez-Unzueta, E. Garcia-Sanchez, R. Mercado-Solis, and M. A. L. Hernandez-Rodriguez, Revista Mexicana de Fisica, 55: 1 (2009).
  43. V. G. Gavriljuk, Mater. Sci. Eng. A, 345: 81 (2003). Crossref
  44. L. Zhang, G. Liu, X. L. Ma, and K. Lu, Acta Mater., 56: 78 (2008). Crossref
  45. J. Augustyn-Nadzieja, Ł. Frocisz, and P. Matusiewicz, Quarterly Tribologia, 305: 7 (2023). Crossref
  46. V. G. Efremenko, A. G. Lekatou, Yu. G. Chabak, B. V. Efremenko, I. Petryshynets, V. I. Zurnadzhy, S. Emmanouilidou, and M. Vojtko, Mater. Today Communications, 35: 105936 (2023). Crossref
  47. D. H. E. Persson, S. Jacobson, and S. Hogmark, Wear, 255, Iss. 1-6: 498 (2003). Crossref
  48. M. O. Vasyl'yev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian).
  49. S. A. Firstov, S. R. Ignatovich, and I. M. Zakiev, Strength Mater., 41: 147 (2009). Crossref
  50. T. Beck and J. C. Aurich, J. Mater. Technol., 9: 16410 (2020). Crossref
  51. G. Fargas, J. J. Roa, and A. Mateo, Mater. Sci. Eng. A, 641: 290 (2015). Crossref
  52. O. Unal and R. Varol, Appl. Surf. Sci., 351: 289 (2015). Crossref
  53. X. Kleber and S. Pirfo Barroso, Mater. Sci. Eng. A, 527: 6046 (2010). Crossref
  54. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  55. G. B. Olson and M. Cohen, J. Less-Common Met., 28: 107 (1972). Crossref
  56. C. Montero-Ocampo, H. Lopez, and M. Talavera, Metall. Mater. Trans. A, 30: 611 (1999). Crossref
  57. M. Moria, K. Yamanaka, H. Matsumoto, and A. Chiba, Mater. Sci. Eng. A, 528: 614 (2010). Crossref
  58. Y. Koizumi, S. Suzuki, K. Yamanaka, B.-S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, and A. Chiba, Acta Mater., 61: 1648 (2013). Crossref
  59. H. Matsumoto, S. Kurosu, B.-S. Lee, Y. Li, and A. Chiba, Scripta Mater., 63: 1092 (2010). Crossref
  60. A. Mani, A. Salinas-Rodriguez, and H. F. Lopez, Mater. Sci. Eng. A, 528, Iss. 7-8: 3037 (2011). Crossref