The Effect of Silver Coating on the Corrosion Behaviour of Ag-Doped Magnesium Alloy NZ30K in Ringer–Locke Solution

V. L. Greshta$^{1}$, O. E. Narivskyi$^{2}$, A. V. Dzhus$^{1}$, R. V. Ivashkiv$^{3}$, O. S. Kuprin$^{4}$

$^{1}$Zaporizhzhia Polytechnic National University, 64 Zhukovsky Str., UA-69063 Zaporizhzhya, Ukraine
$^{2}$LLC ‘Ukrspetsmash’, 7 Haharina Str., UA-71100 Berdiansk, Ukraine
$^{3}$G. V. Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova Str., UA-79060 Lviv, Ukraine
$^{4}$National Science Center ‘Kharkiv Institute of Physics and Technology’, NAS of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine

Received: 05.12.2023; final version - 11.03.2024. Download: PDF

The paper investigates the effect of silver coating on the corrosion behaviour of magnesium alloy NZ30K alloyed with 0.09 wt.% Ag in Ringer–Locke solution. Samples of the alloy under study are plated with a silver layer of 200–300 nm and 500 nm thickness using the DC-magnetron sputtering system equipped with a circular silver source and target (of 50 mm in diameter) in a gas discharge. An unbalanced magnetron in a 600 mA DC mode at a voltage of 400 V is used. The silver coating at a constant magnetron power of 240 W and a bias voltage of 100 V is applied. The deposition time of a silver layer of 200–300 nm is of 5 minutes, and for 500 nm, is of 15 minutes. As found, the steady-state value of the corrosion potential $E_{cor}$ for the samples of the studied alloy clad with a silver layer of 200–300 nm is formed during 2060 s from -1.418 up to -1.4449 V, and with 500 nm layer, during 1880 s from -1.433 up to -1.465 V. As recorded, the steady-state value of $E_{cor}$ for both samples is established in two stages. As found, the rate of shifting of the potential $E_{cor}$ for the studied samples in the negative direction at the first stage is of 0.062 and 0.034 mV/sec, respectively. As shown, the rate of shifting of $E_{cor}$ in the negative direction for the sample with a coating thickness of 200–300 nm at this stage is by 1.82 times higher than for the sample with a coating thickness of 500 nm. This is due to a larger number of linear and point defects over the coating with a thickness of 200–300 nm than with 500 nm and more intense contact corrosion. During the transition from the first stage to the second one of the formation of the stationary value of the potential $E_{cor}$, its abrupt fluctuation of up to 5 mV is observed that is associated with the delamination of the coating from the alloy in the vicinity of corrosion pits on the surface of the samples due to the contact and crevice corrosions and the mechanical effect of hydrogen bubbles released at the cathodic areas (of silver coating). As shown, the steady-state value of the potential $E_{cor}$ for the samples of the alloy under study with a coating thickness of 200–300 nm and 500 nm is more positive by 9 and 7%, respectively, than that of the sample of the same alloy without a silver layer. This proves that, by applying silver coatings with different thicknesses, it is possible to control the rate of corrosion dissolution of NZ30K alloy with Ag (0.09 wt.%) in Ringer–Locke solution, and this approach can be used for the fabrication of biodegradable implants for the treatment of broken human bones.

Key words: biodegradable implants, magnesium alloy for implants, silver coating on the surface of magnesium implants, local corrosion of magnesium implants clad with a silver layer.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i08/0755.html

DOI: https://doi.org/10.15407/mfint.46.08.0755

PACS: 68.47.Gh, 68.55.J-, 81.15.Cd, 81.40.-z, 81.65.Kn, 82.45.Bb, 87.85.jj

Citation: V. L. Greshta, O. E. Narivskyi, A. V. Dzhus, R. V. Ivashkiv, and O. S. Kuprin, The Effect of Silver Coating on the Corrosion Behaviour of Ag-Doped Magnesium Alloy NZ30K in Ringer–Locke Solution, Metallofiz. Noveishie Tekhnol., 46, No. 8: 755—769 (2024)


REFERENCES
  1. D. Gibbons, ASM Handbook: Vol. 23: Materials for Medical Devices (Ed. R. J. Narayan) (Materials Park, OH: ASM International: 2012), Ch. Introduction to Medical Implant Materials, p. 3. Crossref
  2. B. D. Ratner, A. S. Haffman, F. J. Schoen, and J. E. Lemons, An Introduction to Materials in Medicine. Third Edition (Academic Press: 2013).
  3. M. L. Busam, R. J. Ester, and W. T. Obremskey, Journal of the American Academy of Orthopaedic Surgeons, 14, No. 2: 113 (2006). Crossref
  4. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomaterials, 27, No. 9: 1728 (2006). Crossref
  5. A. Denkena and B. Lucas, Biocompatible Magnesium Alloys as Absorbable Implant Materials - Adjusted Surface and Subsurface Properties by Machining Processes, CIRP Annals, 56, Iss. 1: 113 (2007). Crossref
  6. M. Esmaily, J. E. Svensson, S. Fajardo, N. Birbilis, G. S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L. G. Johansson, Progr. Mater. Sci., 89: 192-193 (2017). Crossref
  7. G. L. Song and Z. Shi, Corrosion Science, 85: 126 (2014). Crossref
  8. A. D. King, N. Birbilis, and J. R. Scully, Electrochimica Acta., 121: 394 (2014). Crossref
  9. S. C. Cowin, A. E. Goodship and J. L. Cunningham, Bone Mechanics Handbook. Second Edition (Boca Raton, FL: CRC Press: 2001), Ch. 5.
  10. M. E. Müller, M. Allgöwer, R. Schneider and H. Willenegger, Manual of Internal Fixation. Techniques Recommended by the AO Group (Berlin-Heidelberg: Springer: 1991). Crossref
  11. X.-N. Gu and Y.-F. Zheng, Front. Mater. Sci. China, 4: 111 (2010). Crossref
  12. Y. N. An and R. A. Draughn, Mechanical Testing of Bone and the Bone-Implant Interface (Boca Raton: CRC Press: 1999).
  13. W. D. Müller, M. L. Nascimento, M. Zeddies, M. Córsico, L.M. Gassa, and M. A. F. L. D. Mele, Materials Research, 10: 5 (2007). Crossref
  14. F. Witte, H. Ulrich, M. Rudert, and E. Willbold, Journal of Biomedical Materials Research. Part A, 81: 748 (2007). Crossref
  15. L. Xu, G. Yu, E. Zhang, F. Pan, and K. Yang, Journal of Biomedical Materials Research. Part A, 83, No. 3: 703 (2007). Crossref
  16. G. D. Zhang, J. J. Huang, K. Yang, B. C. Zhang, and H. J. Ai, Acta Metall. Sin., 43: 1186 (2007).
  17. H. E. Friedrich and B. L. Mordike, Magnesium Technology, 212: 677 (2006).
  18. P. C. Ferreira, K. D. A. Piai, A. M. M. Takayanagui, and S. I. Segura-Muñoz, Rev. Latino-Am. Enfermagem, 16, No. 1: 151 (2008). Crossref
  19. Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Biomaterials, 19, No. 13: 1197 (1998). Crossref
  20. N. Cases, The Medical Journal of Australia, 183, No. 3: 145 (2005). Crossref
  21. V. Greshta, V. Shalomeev, A. Dzhus, and O. Mityaev, Novi Materialy ta Tekhnolohiyi v Metalurgiyi ta Mashynobuduvanni [New Materials and Technologies in Metallurgy and Mechanical Engineering], 2: 14 (2023) (in Ukrainian). Crossref
  22. M. F. Kulyk, T. V. Zasukha, and M. B. Lutsyuk, Saponite and Aerosil in Animal Husbandry and Medicine (Vinnytsia: FOP Rogalska I.O.: 2012).
  23. T. C. Lowe and R. Z. Valiev, Advanced Biomaterials and Biodevices (2014), p. 1.
  24. W. Xu, N. Birbilis, G. Sha, and Y. Wang, Nature Mater., 14, No. 12: 1229 (2015). Crossref
  25. H. R. B. Rad, M. H. Idris, M. R. A. Kadir, and S. Farahan, Materials & Design, 33: 88 (2012). Crossref
  26. G. L. Makar and J. Kruger, Inter. Mater. Rev., 38, No. 3: 138 (1993). Crossref
  27. V. L. Greshta, O. E. Narivskyi, A. V. Dzhus, and V. A. Vynar, Phys. Sci. and Technol., 10, No. 2 (2023).
  28. H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys (Materials Park, OH: ASM International: 1999).
  29. O. E. Narivs'kyi, Fiz.-Khim. Mekh. Mater., 41, No. 1: 104 (2005).
  30. O. E. Narivs'kyi, Mater. Sci., 43, No. 1: 124 (2007). Crossref
  31. O. E. Narivs'kyi, Mater. Sci., 43, No. 2: 256 (2007). Crossref
  32. I. L. Rosenfel, Korroziya i Zashchita Metallov [Corrosion and Protection of Metals] (Moskva: Metallurgy: 1970) (in Russian).
  33. N. V. Vyazovikina, Ehlektrokhimiya, 6: 917 (1992) (in Russian).
  34. O. E. Narivskyi, S. O. Subbotin, T. V. Pulina, S. O. Leoshchenko, M. S. Khoma, and N. B. Ratska, Mater. Sci., 58, No. 5: 1 (2023). Crossref
  35. O. E. Narivskyi, S. A. Subbotin, T. V. Pulina, and M. S. Khoma, Mater. Sci., 58: 41 (2022). Crossref
  36. O. E. Narivskyi, S. B. Belikov, S. A. Subbotin, and T. V. Pulina, Mater. Sci., 57, No. 2: 291 (2021). Crossref
  37. O. Narivs'kyi, R. Atchibayev, A. Kemelzhanova, G. Yar-Mukhamedova, G. Snizhnoi, and S. Subbotin, Eurasian Chemico-Technological Journal, 24, No. 4: 295 (2022). Crossref
  38. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, C. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen, Biomaterials, 26: 3557 (2005). Crossref
  39. W.A. Badawy, N. H. Hilal, M. El-Rabee, and H. Nady, Electrochimica Acta, 55, No. 6: 1880 (2010). Crossref
  40. S. Abela, Corrosion and Surface Treatments, 10: 195 (2011).
  41. H. Hornberger, S. Virtanen, and A. R. Boccaccini, Acta Biomaterialia, 8, No. 7: 2442 (2012). Crossref
  42. K. Y. Chiu, M. H. Wong, F. T. Cheng, and H. C. Man, Surface and Coatings Technology, 202, No. 3: 590 (2007). Crossref
  43. M. Carboneras, M. C. García-Alonso, and M. L. Escudero, Corrosion Science, 53, No. 4: 1433 (2011). Crossref
  44. H. M. Wong, K. W. K. Yeung, K. O. Lam, V. Tam, P. K. Chu, K. D. K. Luk, and K. M. C. Cheung, Biomaterials, 31, No. 8: 2084 (2010). Crossref
  45. Z. Zhen, T. Xi, and Y. Zheng, Transactions of Nonferrous Metals Society of China, 23, No. 8: 2283 (2013). Crossref