Change of Mechanical Properties of Bars in the Process of Deformation by Combined Method

I. E. Volokitina and A. V. Volokitin

Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Republic of Kazakhstan

Received: 07.12.2023; final version - 11.03.2024. Download: PDF

A new combined deformation technology combining radial-shear broaching and drawing technology is developed in this work, which makes it possible to improve the mechanical and operational properties of carbon-steel bars. As a result, during three straining cycles, the average value of microhardness in the central zone is of 2085 MPa, in the neutral zone, it is of 2505 MPa, and in the surface zone, it is of 2915 MPa. In addition, the strength properties are increased by almost 2 times, the plastic characteristics are reduced not much, but remain at a fairly good level for steel 45 due to obtaining gradient microstructure during straining.

Key words: steel, bar, drawing, radial-shear broaching, severe plastic deformation.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i09/0845.html

DOI: https://doi.org/10.15407/mfint.46.09.0845

PACS: 46.80.+j, 62.20.F-, 81.20.Hy, 81.20.Wk, 81.40.Ef, 81.40.Lm, 83.50.Uv

Citation: I. E. Volokitina and A. V. Volokitin, Change of Mechanical Properties of Bars in the Process of Deformation by Combined Method, Metallofiz. Noveishie Tekhnol., 46, No. 9: 845—850 (2024)


REFERENCES
  1. I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Progr. Phys. Met., 24, No. 1: 132 (2023).
  2. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023).
  3. A. Bychkov and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12, No. 3: 564–566 (2023).
  4. I. E. Volokitina, Progr. Phys. Met, 24: No. 3: 593–622 (2023).
  5. M. O. Kurin, O. O. Horbachov, A. V. Onopchenko, and T. V. Loza, Metallofiz. Noveishie Tekhnol., 44, No. 6: 785 (2022).
  6. E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02609 (2023).
  7. G. I. Raab, L. A. Simonova, and G. N. Aleshin, Metalurgija, 55: 177 (2016).
  8. J. Li, Q. Mei, Y. Li, Т. Wang, Metals, 10: 73 (2020).
  9. A. Naizabekov and E. Panin, Journal of Materials Engineering and Performance, 28, No. 3: 1762 (2019).
  10. K. Lu., Science, 345: 1455 (2014).
  11. G. I. Raab, D. V. Gunderov, L. N. Shafigullin, Yu. M. Podrezov, M. I. Danylenko, N. K. Tsenev, R. N. Bakhtizin, G. N. Aleshin, and A. G. Raab, Mater. Phys. Mech., 24: 242 (2015).
  12. T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science, 331: 1587 (2011).
  13. S. P. Galkin, Method of Screw Rolling: Patent № 2293619 RF. МПК В21В, 19/00; NITU MISiS - No. 2006110612/02, applied for 2007. 04.04.2006; publ. 20.02.2007 (Bulletin of Inventions, № 5) (2007).
  14. V. V. Chigirinsky, Y. S. Kresanov, and I. E. Volokitina, Metallofiz. Noveishie. Tekhnol., 45, No. 4: 467 (2023).
  15. M. Murugesan, D. Won, and J. Johnson, Materials, 12: 609 (2019).
  16. C. Z. Duan and L. C. Zhang, Mater. Sci. Eng. A, 532: 111 (2012).