An Influence of the Composition and Annealing Temperature onto Microstructure and Mechanical Properties of Fe–Cr–Al Alloys

V. O. Kharchenko$^{1,2}$, D. O. Kharchenko$^{1}$, O. M. Schokotova$^{1}$, B. O. Lysenko$^{1}$, A. V. Dvornichenko$^{2}$

$^{1}$Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlivska St., UA-40000 Sumy, Ukraine
$^{2}$Sumy State University, 2 Rimskogo-Korsakova St., UA-40007 Sumy, Ukraine

Received: 11.03.2024; final version - 06.05.2024. Download: PDF

A generalized model of the phase field is developed for modelling the dynamics of microstructural transformations in iron-based Fe–Cr–Al alloys by taking into account the dynamics of equilibrium point defects. Dynamics of the processes of formation and growth of chromium-enriched precipitates of α'-phase during long-term annealing of solid solution is studied. An influence of both the concentration of alloying elements and the annealing temperature on the dynamic and statistical characteristics of the growing precipitates is analysed. The scaling dynamics of the average size of precipitates, their number as well as the universality of size distribution are shown. A redistribution of elastic stresses under mechanical loading in the form of shear deformation is investigated within the framework of the nonlinear theory of elasticity. The influence of both the composition and the annealing temperature on the mechanical properties of the alloy is analysed.

Key words: phase-field method, numerical modelling, precipitates of secondary phases, statistical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i09/0861.html

DOI: https://doi.org/10.15407/mfint.46.09.0861

PACS: 61.72.Cc, 61.72.J-, 61.72.Qq, 61.80.Az, 62.20.D-, 62.20.F-, 82.60.Nh

Citation: V. O. Kharchenko, D. O. Kharchenko, O. M. Schokotova, B. O. Lysenko and A. V. Dvornichenko, An Influence of the Composition and Annealing Temperature onto Microstructure and Mechanical Properties of Fe–Cr–Al Alloys, Metallofiz. Noveishie Tekhnol., 46, No. 9: 861—879 (2024) (in Ukrainian)


REFERENCES
  1. E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc., 106: 294 (1959).
  2. C. Wukusick and J. Collins, Mater. Res. Std., 4: 6376 (1964).
  3. Y. Yamamoto, B. Pint, K. Terrani, K. Field, Y. Yang, and L. Snead, J. Nucl. Mater., 467: 703 (2015).
  4. F. Stott, G. Wood, and J. Stringer, Oxid. Met., 44: 113 (1995).
  5. J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, and P. Szakalos, J. Nucl. Mater., 457: 291 (2015).
  6. S. Kobayashi and T. Takasugi, Scr. Mater., 63: 1104 (2010).
  7. M. Mathon, Y. De Carlan, G. Geoffroy, X. Averty, A. Alamo, and C. De Novion, J. Nucl. Mater., 312: 236 (2003).
  8. H. Qu, Y. Lang, C. Yao, H. Chen, and C. Yang, Mater. Sci. Eng.: A, 562: 9 (2013).
  9. W. Li, S. Lu, Q.-M. Hu, H. Mao, B. Johansson, and L. Vitos, Comput. Mater. Sci., 74: 101 (2013).
  10. G. Kresse and J. Furthmuller, Phys. Rev. B, 54: 11169 (1996).
  11. G. Kresse and J. Hafner, Phys. Rev. B, 47: 558 (1993).
  12. G. Kresse and J. Hafner, J. Phys.: Condens. Matter, 6: 8245 (1994).
  13. H. Dai, M. Yu, Y. Dong, W. Setyawan, N. Gao, and X. Wang, Metals, 12: 558 (2022).
  14. S. Chen, Y. Li, S. Shi, and S. Jin, J. Nanomater., 2019: 6862390 (2019).
  15. J. Lee, K. Park, and K. Chang, Metals, 11: 4 (2020).
  16. K. Chang, F. Meng, F. Ge, G. Zhao, S. Du, and F. Huang, J. Nucl. Mater., 516: 63 (2019).
  17. A. T. Dinsdale, Calphad, 15: 317 (1991).
  18. G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer: 2016).
  19. J. E. Hilliard, Phase Transformation (Metals Park, Ohio: Am. Soc. for Metals: 1970), pp.497–539.
  20. L. Liang, Z.-G. Mei, Y. S. Kim, M. Anitescu, and A. M. Yacout, Comput. Mater. Sci., 145: 86 (2018).
  21. Z. Yan, S. Shi, Y. Li, J. Chen, and S. Maqbool, Phys. Chem. Chem. Phys., 22: 3611 (2020).
  22. J. W. Cahn, Acta Metall., 10: 179 (1962).
  23. C. Huang, M. O. de La Cruz, and B. Swift, Macromolecules, 28: 7996 (1995).
  24. K. Wu, J. Morral, and Y. Wang, Acta Mater., 49: 3401 (2001).
  25. K. Wu, J. Morral, and Y. Wang, Acta Mater., 52: 1917 (2004).
  26. A. Onuki, Phase Transition Dynamics (Cambridge: Cambridge University Press: 2002).
  27. A. Onuki, Phys. Rev. E, 68: 061502 (2003).
  28. A. Minami and A. Onuki, Phys. Rev. B, 70: 184114 (2004).
  29. A. Onuki, A. Furukawa, and A. Minami, Pramana J. Phys., 64: 661 (2005).
  30. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (New York: Pergamon: 1973).
  31. S. B. Biner, Programming Phase-Field Modeling (Springer: 2017).
  32. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Berlin–Heidelberg: Springer-Verlag: 1988).
  33. L. Q. Chen and J. Shen, Comput. Physi. Commun., 108: 147 (1998).
  34. J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, Phys. Rev. E, 60: 3564 (1999).
  35. D. Terentyev, P. Olsson, T. Klaver, and L. Malerba, Comput. Mater. Sci., 43: 1183 (2008).
  36. S. Kim and W. Buyers, J. Phys. F: Metal Phys., 8: L103 (1978).
  37. Ch. Kittel and P. McEuen, Introduction to Solid State Physics (John Wiley & Sons: 2018).
  38. D. Terentyev, S. Hafez Haghighat, and R. Schaublin, J. Appl. Phys., 107: 061806 (2010).
  39. V. Ogorodnikov, A. Rakitskii, and Y. I. Rogovoi, Powder Metall. Met. Ceram., 27: 55 (1988).
  40. S. Nagasaki, Metals Data Book (Tokyo: Japan Institute of Metals: 2004).
  41. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19: 35 (1961).
  42. C. Wagner, Z. Elektrochem, 65: 581 (1961).
  43. S. Messoloras, B. Pike, R. Stewart, and C. Windsor, Met. Sci., 18: 311 (1984).
  44. Z. Yang, Z. X. Wang, C. H. Xia, M. H. Ouyang, J. C. Peng, H. W. Zhang, and X. S. Xiao, Mater. Sci. Eng.: A, 772: 138714 (2020).
  45. G. Pastore, K. A. Gamble, and J. D. Hales, Modeling Benchmark for FeCrAl Cladding in the IAEA CRP ACTOF: FeCrAl–C35M Material Models and Benchmark Cases Specifications (Idaho Falls: Idaho National Lab.: 2017).
  46. K. G. Field, M. A. Snead, Y. Yamamoto, and K. A. Terrani, Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications (Oak Ridge National Lab.: 2017).
  47. Y. He, J. Liu, S. Qiu, Z. Deng, Y. Yang, and A. McLean, Mater. Sci. Eng.: A, 726: 56 (2018).
  48. M. N. Gussev, K. G. Field, E. Cakmak, and Y. Yamamoto, Mechanical Behavior and Structure of Advanced Fe–Cr–Al Alloy Weldments. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors (Springer International Publishing: 2019), pp. 1417–1430.
  49. Y. Zhang, H. Sun, H. Wang, X. Wang, X. An, and K. He, Mater. Sci. Eng.: A, 826: 142003 (2021).
  50. Y. Yano, T. Tanno, S. Ohtsuka, T. Kaito, and S. Ukai, Mater. Trans., 62: 1239 (2021).
  51. Y. Yamamoto, B. A. Pint, K. A. Terrani, K. G. Field, Y. Yang, and L. L. Snead, J. Nucl. Mater., 467: 703 (2015).
  52. H. Zhang, J. Ma, Z. Gao, F. Guo, S. Xu, G. Hou, and G. Zheng, Materials, 15: 3718 (2022).