Conditions for Gas-Discharge Synthesis of Thin Films of Tungsten Oxide from Pulsed Plasma Based on the Gas–Vapour Mixture ‘Oxygen–Tungsten’

O. K. Shuaibov, R. V. Hrytsak, O. Yo. Mynya, R. M. Holomb, Z. T. Homoki

DVNZ ‘Uzhgorod National University’, 3 Narodna Sq., UA-88000, Uzhgorod, Ukraine

Received: 20.03.2024; final version - 06.05.2024. Download: PDF

The electrical and optical characteristics of an overvoltage nanosecond discharge (OND) between the tungsten electrodes in oxygen (p = 101, 13.3 kPa) are presented. The formation of clusters and nanoparticles of tungsten oxide within the OND plasma is occurred during the introduction of tungsten vapour into the discharge gap, resulting from microexplosions of natural inhomogeneities on the electrode surface within the strong electric-discharge field, along with the formation of ectons. This creates the conditions for synthesizing thin films of tungsten oxide (WO3), which could be deposited onto a glass substrate placed near the discharge gap. Oscillograms of the voltage and current pulses, pulse power and energy contributions to the plasma per discharge pulse, as well as the spectral characteristics of the OND, are studied. The primary excited components of the plasma of a tungsten−oxygen vapour–gas mixture are identified. Micro-Raman spectroscopy of the synthesized films reveals that they consist of tungsten oxide (WO3).

Key words: overvoltage nanosecond discharge, tungsten, oxygen, plasma, nanoparticles, thin films.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i12/1163.html

DOI: https://doi.org/10.15407/mfint.46.12.1163

PACS: 52.80.-s, 52.80.Mg, 52.80.Tn, 78.30.Hv, 79.60.Jv, 81.15.Gh, 82.33.Ya

Citation: O. K. Shuaibov, R. V. Hrytsak, O. Yo. Mynya, R. M. Holomb, and Z. T. Homoki, Conditions for Gas-Discharge Synthesis of Thin Films of Tungsten Oxide from Pulsed Plasma Based on the Gas–Vapour Mixture ‘Oxygen–Tungsten’, Metallofiz. Noveishie Tekhnol., 46, No. 12: 1163—1172 (2024) (in Ukrainian)


REFERENCES
  1. O. K. Shuaibov and A. O. Malinina, Prog. Phys. Met., 22, No. 3: 382 (2021).
  2. E. Kh. Bakst, V. F. Tarasenko, Yu. V. Shut’ko, and M. V. Erofeev, Quantum Electron., 42, No. 2:153 (2012).
  3. D. Z. Pai, D. L. Lacoste, and C. O. Laux, Plasma Souces Sci. Technol., 19: 065015 (2010).
  4. V. F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (New York: Nova Science Publishers Inc.: 2014).
  5. T. E. Itin and A. Voloshko, Appl. Phys. B, 113, No. 3: 473 (2013).
  6. Y. Shi and Y. Zang, Chem. Eng. J., 335: 942 (2019).
  7. Yu. O. Adamchuk, L. Z. Boguslavskii, A. N. Yushchishina, and A. V. Sinchuk, Surface Engineering and Applied Electrochemistry, 59: 798 (2023).
  8. G. A. Mesyats, Usp. Fiz. Nauk., 165, No. 6: 601 (1995) (in Russian).
  9. M. I. Vatrala, O. K. Shuaibov, O. Y. Mynia, R. V. Hrytsak, and Z. T. Homoki, Proceedings of the 30th Anniversary Conference of the Institute of Electron Physics of the National Academy of Sciences of Ukraine (Uzhgorod, Ukraine), p. 128 (2022) (in Ukrainian).
  10. A. R. Striganov, Tables of Spectral Lines of Neutral and Ionized Atoms (New York: Springer: 1968).
  11. NIST Atomic Spectra Database Lines Form.
  12. T. Sarmah, N. Aomoa, G. Bhattacharjee, S. Sarma, B. Bora, D. N. Srivastava, H. Bhuyan, M. Kakati, and G. De Temmerman, J. Alloys Comp., 725: 606 (2017).
  13. Wei Hao Lai, Lay Gaik Teoh, Yen Hsun Su, Jiann Shieh, and Min Hsiung Hon, J. Alloys Comp., 438, Nos. 1−2: 247 (2007).
  14. P. J. Boruah, R. R. Khanikar, and H. Bailung, Plasma Chem. Plasma Process., 40: 1019 (2020).
  15. F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, and G. Henshaw, Nanotechnology, 22: 335702 (2011).
  16. D. Dellasega, S. M. Pietralunga, A. Pezzoli, V. Russo, L. Nasi, C. Conti, M. J. Vahid, A. Tagliaferri, and M. Passoni, Nanotechnology, 26: 365601 (2015).